Your browser doesn't support javascript.
loading
Machine Learning-Based Prediction of Glioma IDH Gene Mutation Status Using Physio-Metabolic MRI of Oxygen Metabolism and Neovascularization (A Bicenter Study).
Stadlbauer, Andreas; Nikolic, Katarina; Oberndorfer, Stefan; Marhold, Franz; Kinfe, Thomas M; Meyer-Bäse, Anke; Bistrian, Diana Alina; Schnell, Oliver; Doerfler, Arnd.
Afiliação
  • Stadlbauer A; Karl Landsteiner University of Health Sciences, 3500 Krems, Austria.
  • Nikolic K; Institute of Medical Radiology, Diagnostics, Intervention, University Hospital St. Pölten, 3100 St. Pölten, Austria.
  • Oberndorfer S; Department of Neurosurgery, Universitätsklinikum Erlangen, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, 91054 Erlangen, Germany.
  • Marhold F; Karl Landsteiner University of Health Sciences, 3500 Krems, Austria.
  • Kinfe TM; Division of Neurology, University Hospital St. Pölten, 3100 St. Pölten, Austria.
  • Meyer-Bäse A; Karl Landsteiner University of Health Sciences, 3500 Krems, Austria.
  • Bistrian DA; Division of Neurology, University Hospital St. Pölten, 3100 St. Pölten, Austria.
  • Schnell O; Karl Landsteiner University of Health Sciences, 3500 Krems, Austria.
  • Doerfler A; Division of Neurosurgery, University Hospital St. Pölten, 3100 St. Pölten, Austria.
Cancers (Basel) ; 16(6)2024 Mar 08.
Article em En | MEDLINE | ID: mdl-38539436
ABSTRACT
The mutational status of the isocitrate dehydrogenase (IDH) gene plays a key role in the treatment of glioma patients because it is known to affect energy metabolism pathways relevant to glioma. Physio-metabolic magnetic resonance imaging (MRI) enables the non-invasive analysis of oxygen metabolism and tissue hypoxia as well as associated neovascularization and microvascular architecture. However, evaluating such complex neuroimaging data requires computational support. Traditional machine learning algorithms and simple deep learning models were trained with radiomic features from clinical MRI (cMRI) or physio-metabolic MRI data. A total of 215 patients (first center 166 participants + 16 participants for independent internal testing of the algorithms versus second site 33 participants for independent external testing) were enrolled using two different physio-metabolic MRI protocols. The algorithms trained with physio-metabolic data demonstrated the best classification performance in independent internal testing precision, 91.7%; accuracy, 87.5%; area under the receiver operating curve (AUROC), 0.979. In external testing, traditional machine learning models trained with cMRI data exhibited the best IDH classification

results:

precision, 84.9%; accuracy, 81.8%; and AUROC, 0.879. The poor performance for the physio-metabolic MRI approach appears to be explainable by site-dependent differences in data acquisition methodologies. The physio-metabolic MRI approach potentially supports reliable classification of IDH gene status in the presurgical stage of glioma patients. However, non-standardized protocols limit the level of evidence and underlie the need for a reproducible framework of data acquisition techniques.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article