Your browser doesn't support javascript.
loading
The impact of processing technology on microbial community composition and functional properties of Beninese maize ogi.
Sanya, A K Carole; Linnemann, Anita R; Madode, Yann E; Schoustra, Sijmen E; Smid, Eddy J.
Afiliação
  • Sanya AKC; Food Quality and Design (FQD), Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands; Laboratoire de Sciences des Aliments (LSA), Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03 B.P. 2819 Jericho-Cotonou, Benin.
  • Linnemann AR; Food Quality and Design (FQD), Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands.
  • Madode YE; Laboratoire de Sciences des Aliments (LSA), Faculté des Sciences Agronomiques, Université d'Abomey-Calavi, 03 B.P. 2819 Jericho-Cotonou, Benin.
  • Schoustra SE; Laboratory of Genetics, Wageningen University and Research, P.O. Box 16, 6700 AA Wageningen, the Netherlands; Department of Food Science and Nutrition, School of Agricultural Sciences, University of Zambia, Lusaka, Zambia.
  • Smid EJ; Food Microbiology, Wageningen University and Research, P.O. Box 17, 6700 AA Wageningen, the Netherlands. Electronic address: eddy.smid@wur.nl.
Int J Food Microbiol ; 416: 110683, 2024 May 02.
Article em En | MEDLINE | ID: mdl-38554557
ABSTRACT
Traditionally fermented maize starch, called ogi, is produced to prepare akpan, a yoghurt-like street food widely consumed in Benin. Current maize ogi production practices were compared to assess the impact of different processing technologies on the characteristics of the fermented product as a basis to determine best practices. Maize starch slurry samples were collected from processors in five municipalities in southern Benin and analysed before fermentation (starch samples) and after spontaneous fermentation (ogi samples). Four technological pathways for maize starch production were distinguished based on variations in the duration of steeping the grains, which ranged from 6 to 72 h, and whether or not kneading of the wet flour before filtration was practised. Six categories of maize ogi were derived from the four technology groups based on the duration of the fermentation, which lasted from 6 to 24 h. The average pH of maize starch varied from 3.2 to 5.3, with the lowest values for the two technology groups that also had the highest lactate concentrations (9-11.8 g/L). The six maize ogi categories had a pH ranging from 3.1 to 4.0. Viable plate counts of lactic acid bacteria were similar for maize starch samples and for ogi samples, whereas yeast counts showed clear differences. Members of the genera Limosilactobacillus, Lactobacillus, Weissella, Streptococcus and Ligilactobacillus, dominated the bacterial community in maize starch, and were also dominant in maize ogi. The members of the genera dominating the fungal community in maize starch were also dominant in maize ogi, except for Aspergillus and Stenocarpella spp., which decreased in relative abundance by fermentation. The highest total free essential amino acid concentration was 61.6 mg/L in maize starch and 98.7 mg/L in ogi. The main volatile organic compounds in maize starch samples were alcohols, esters, and carboxylic acids, which also prevailed in maize ogi samples. The results indicate that the characteristics of traditional maize ogi depend on the processing technologies used to produce the maize starch before the intentional fermentation into ogi, with no clear-cut connection with the production practices due to high variations between samples from the same technology groups. This revealed the importance of a standardized maize starch production process, which would benefit controlling the starch fermentation and the characteristics of maize ogi. Further research is needed to understand the hidden fermentation during maize starch production for determination of the best practices that support the production of quality maize ogi.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Zea mays / Microbiota Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Zea mays / Microbiota Idioma: En Ano de publicação: 2024 Tipo de documento: Article