Your browser doesn't support javascript.
loading
Light-harvesting iridium (III) complex-sensitized NiO photocathode for photoelectrochemical bioanalysis.
Zong, Chengxue; Kong, Linghui; Li, Can; Xv, Huijuan; Lv, Mengwei; Chen, Xiaodong; Li, Chunxiang.
Afiliação
  • Zong C; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
  • Kong L; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
  • Li C; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
  • Xv H; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
  • Lv M; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
  • Chen X; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China.
  • Li C; Key Laboratory of Optic-Electric Sensing and Analytical Chemistry for Life Science, MOE, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, Qingdao University of Science and Technology, Qingdao, 266042, People's Republic of China. lichunxiang@qust.edu.cn.
Mikrochim Acta ; 191(4): 223, 2024 04 01.
Article em En | MEDLINE | ID: mdl-38556564
ABSTRACT
A novel iridium (III) complex bearing boron dipyrromethene (Bodipy) as the light-harvesting antenna has been synthesized and is firstly employed as photosensitizer to assemble a dye-sensitized NiO photocathode. The assembled photocathode exhibits significantly improved photoelectrochemical (PEC) performance. Integrating the prepared photocathode with hybridization chain reaction (HCR)--based signal amplification strategy, a cathodic PEC biosensor is proposed for the detection of microRNA-133a (miRNA-133a). In the presence of the target, HCR is triggered to form long duplex concatamers on the photocathode, which allows numerous manganese porphyrins (MnPP) to bind in the dsDNA groove. With the help of H2O2, MnPP with peroxidase-like activity catalyzes 4--chloro-1-naphthol (4-CN) to produce benzo--4--chlorohexadienone (4-CD) precipitate on the electrode, leading to a significant decrease of photocurrent signal. The decreased photocurrent correlates linearly with the target concentration from 0.1 fM to 1 nM with a detection limit of 66.2 aM (S/N = 3). The proposed PEC strategy exhibits delightful selectivity, reproducibility and stability.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peróxido de Hidrogênio / Irídio Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Peróxido de Hidrogênio / Irídio Idioma: En Ano de publicação: 2024 Tipo de documento: Article