Your browser doesn't support javascript.
loading
Intestinal carcinogenicity screening of environmental pollutants using organoid-based cell transformation assay.
Wang, Ziwei; Chen, Shen; Guo, Yuzhi; Zhang, Rui; Zhang, Qi; Jiang, Xinhang; Li, Miao; Jiang, Yue; Ye, Lizhu; Guo, Xiaoyu; Li, Chuang; Zhang, Guangtong; Li, Daochuan; Chen, Liping; Chen, Wen.
Afiliação
  • Wang Z; Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
  • Chen S; Stony Brook Cancer Center, Department of Pathology, Renaissance School of Medicine, Stony Brook University, Lauterbur Drive, Stony Brook, NY, 11794, USA.
  • Guo Y; Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
  • Zhang R; Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
  • Zhang Q; Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
  • Jiang X; Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
  • Li M; Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
  • Jiang Y; Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
  • Ye L; Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
  • Guo X; Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
  • Li C; Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
  • Zhang G; Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
  • Li D; Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
  • Chen L; Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
  • Chen W; Department of Toxicology, Guangdong Provincial Key Laboratory of Food, Nutrition and Health, School of Public Health, Sun Yat-Sen University, 74 Zhongshan Road 2, Guangzhou, 510080, China.
Arch Toxicol ; 98(6): 1937-1951, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38563870
ABSTRACT
The high incidence of colorectal cancer (CRC) is closely associated with environmental pollutant exposure. To identify potential intestinal carcinogens, we developed a cell transformation assay (CTA) using mouse adult stem cell-derived intestinal organoids (mASC-IOs) and assessed the transformation potential on 14 representative chemicals, including Cd, iPb, Cr-VI, iAs-III, Zn, Cu, PFOS, BPA, MEHP, AOM, DMH, MNNG, aspirin, and metformin. We optimized the experimental protocol based on cytotoxicity, amplification, and colony formation of chemical-treated mASC-IOs. In addition, we assessed the accuracy of in vitro study and the human tumor relevance through characterizing interdependence between cell-cell and cell-matrix adhesions, tumorigenicity, pathological feature of subcutaneous tumors, and CRC-related molecular signatures. Remarkably, the results of cell transformation in 14 chemicals showed a strong concordance with epidemiological findings (8/10) and in vivo mouse studies (12/14). In addition, we found that the increase in anchorage-independent growth was positively correlated with the tumorigenicity of tested chemicals. Through analyzing the dose-response relationship of anchorage-independent growth by benchmark dose (BMD) modeling, the potent intestinal carcinogens were identified, with their carcinogenic potency ranked from high to low as AOM, Cd, MEHP, Cr-VI, iAs-III, and DMH. Importantly, the activity of chemical-transformed mASC-IOs was associated with the degree of cellular differentiation of subcutaneous tumors, altered transcription of oncogenic genes, and activated pathways related to CRC development, including Apc, Trp53, Kras, Pik3ca, Smad4 genes, as well as WNT and BMP signaling pathways. Taken together, we successfully developed a mASC-IO-based CTA, which might serve as a potential alternative for intestinal carcinogenicity screening of chemicals.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Testes de Carcinogenicidade / Neoplasias Colorretais / Organoides / Transformação Celular Neoplásica / Poluentes Ambientais Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Testes de Carcinogenicidade / Neoplasias Colorretais / Organoides / Transformação Celular Neoplásica / Poluentes Ambientais Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article