Your browser doesn't support javascript.
loading
A 3D bioprinted hydrogel gut-on-chip with integrated electrodes for transepithelial electrical resistance (TEER) measurements.
Vera, Daniel; García-Díaz, María; Torras, Núria; Castillo, Óscar; Illa, Xavi; Villa, Rosa; Alvarez, Mar; Martinez, Elena.
Afiliação
  • Vera D; Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona 08193, Spain.
  • García-Díaz M; Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain.
  • Torras N; Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain.
  • Castillo Ó; Biomimetic Systems for Cell Engineering, Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, Barcelona 08028, Spain.
  • Illa X; Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona 08193, Spain.
  • Villa R; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain.
  • Alvarez M; Instituto de Microelectrónica de Barcelona, IMB-CNM (CSIC), Bellaterra, Barcelona 08193, Spain.
  • Martinez E; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, Barcelona 08193, Spain.
Biofabrication ; 16(3)2024 Apr 12.
Article em En | MEDLINE | ID: mdl-38574551
ABSTRACT
Conventional gut-on-chip (GOC) models typically represent the epithelial layer of the gut tissue, neglecting other important components such as the stromal compartment and the extracellular matrix (ECM) that play crucial roles in maintaining intestinal barrier integrity and function. These models often employ hard, flat porous membranes for cell culture, thus failing to recapitulate the soft environment and complex 3D architecture of the intestinal mucosa. Alternatively, hydrogels have been recently introduced in GOCs as ECM analogs to support the co-culture of intestinal cells inin vivo-like configurations, and thus opening new opportunities in the organ-on-chip field. In this work, we present an innovative GOC device that includes a 3D bioprinted hydrogel channel replicating the intestinal villi architecture containing both the epithelial and stromal compartments of the gut mucosa. The bioprinted hydrogels successfully support both the encapsulation of fibroblasts and their co-culture with intestinal epithelial cells under physiological flow conditions. Moreover, we successfully integrated electrodes into the microfluidic system to monitor the barrier formation in real time via transepithelial electrical resistance measurements.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrogéis / Dispositivos Lab-On-A-Chip Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Hidrogéis / Dispositivos Lab-On-A-Chip Idioma: En Ano de publicação: 2024 Tipo de documento: Article