Your browser doesn't support javascript.
loading
Layer-Controllable "2.5D" DNA Origami Crystals Synthesized by a Hierarchical Assembly Strategy.
Xie, Xiaolin; Ji, Min; Yan, Xuehui; Yu, Yifan; Wang, Yong; Ma, Ningning; Xing, Hang; Tian, Ye.
Afiliação
  • Xie X; College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of A
  • Ji M; College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of A
  • Yan X; College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of A
  • Yu Y; College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of A
  • Wang Y; College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of A
  • Ma N; College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of A
  • Xing H; Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
  • Tian Y; College of Engineering and Applied Sciences, State Key Laboratory of Analytical Chemistry for Life Science, National Laboratory of Solid State Microstructures, Jiangsu Key Laboratory of Artificial Functional Materials, Chemistry and Biomedicine Innovation Center, Collaborative Innovation Center of A
Angew Chem Int Ed Engl ; 63(24): e202402312, 2024 06 10.
Article em En | MEDLINE | ID: mdl-38578652
ABSTRACT
The finite periodic arrangement of functional nanomaterials on the two-dimensional scale enables the integration and enhancement of individual properties, making them an important research topic in the field of tuneable nanodevices. Although layer-controllable lattices such as graphene have been successfully synthesized, achieving similar control over colloidal nanoparticles remains a challenge. DNA origami technology has achieved remarkable breakthroughs in programmed nanoparticle assembly. Based on this technology, we proposed a hierarchical assembly strategy to construct a universal DNA origami platform with customized layer properties, which we called 2.5-dimensional (2.5D) DNA origami crystals. Methodologically, this strategy divides the assembly procedure into two

steps:

1) array synthesis, and 2) lattice synthesis, which means that the layer properties, including layer number, interlayer distance, and surface morphology, can be flexibly customized based on the independent designs in each step. In practice, these synthesized 2.5D crystals not only pioneer the expansion of the DNA origami crystal library to a wider range of dimensions, but also highlight the technological potential for templating 2.5D colloidal nanomaterial lattices.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: DNA Idioma: En Ano de publicação: 2024 Tipo de documento: Article