Your browser doesn't support javascript.
loading
Tracing the dissipation of difenoconazole, its metabolites and co-formulants in tomato: A comprehensive analysis by chromatography coupled to high resolution mass spectrometry in laboratory and greenhouse trials.
Maldonado-Reina, Antonio Jesús; López-Ruiz, Rosalía; Marín Sáez, Jesús; Romero-González, Roberto; Garrido Frenich, Antonia.
Afiliação
  • Maldonado-Reina AJ; Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAMBITAL), University of Almería, Agri-Food Campus of International Excellence, ceiA3, E-04120, Almería, Spain.
  • López-Ruiz R; Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAMBITAL), University of Almería, Agri-Food Campus of International Excellence, ceiA3, E-04120, Almería, Spain. Electronic
  • Marín Sáez J; Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAMBITAL), University of Almería, Agri-Food Campus of International Excellence, ceiA3, E-04120, Almería, Spain; Department
  • Romero-González R; Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAMBITAL), University of Almería, Agri-Food Campus of International Excellence, ceiA3, E-04120, Almería, Spain.
  • Garrido Frenich A; Research Group "Analytical Chemistry of Contaminants", Department of Chemistry and Physics, Research Centre for Mediterranean Intensive Agrosystems and Agri-Food Biotechnology (CIAMBITAL), University of Almería, Agri-Food Campus of International Excellence, ceiA3, E-04120, Almería, Spain.
Environ Pollut ; 349: 123924, 2024 May 15.
Article em En | MEDLINE | ID: mdl-38580058
ABSTRACT
The study evaluated Ceremonia 25 EC®, a plant protection product (PPP) containing difenoconazole, in tomato crops, to identify potential risks associated with PPPs, and in addition to this compound, known metabolites from difenoconazole degradation and co-formulants present in the PPP were monitored. An ultra high performance liquid chromatography coupled to quadrupole-Orbitrap mass analyser (UHPLC-Q-Orbitrap-MS) method was validated with a working range of 2 µg/kg (limit of quantification, LOQ) to 200 µg/kg. Difenoconazole degradation followed a biphasic double first-order in parallel (DFOP) kinetic model in laboratory and greenhouse trials, with high accuracy (R2 > 0.9965). CGA-205374, difenoconazole-alcohol, and hydroxy-difenoconazole metabolites were tentatively identified and semi-quantified in laboratory trials by UHPLC-Q-Orbitrap-MS from day 2 to day 30. No metabolites were found in greenhouse trials. Additionally, 13 volatile co-formulants were tentatively identified by gas chromatography (GC) coupled to Q-Orbitrap-MS, detectable up to the 7th day after PPP application. This study provides a comprehensive understanding of difenoconazole dissipation in tomatoes, identification of metabolites, and detection of co-formulants associated with the applied PPP.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Triazóis / Solanum lycopersicum / Dioxolanos / Fungicidas Industriais Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Triazóis / Solanum lycopersicum / Dioxolanos / Fungicidas Industriais Idioma: En Ano de publicação: 2024 Tipo de documento: Article