Your browser doesn't support javascript.
loading
LINC01133 regulates MARCKS expression via sponging miR-30d-5p to promote the development of lung squamous cell carcinoma.
Zhang, Yajun; Shi, Woda; Chen, Rongjin; Gu, Yan; Zhao, Mengjie; Song, Jianxiang; Shi, Zhan; Wu, Jixiang; Chang, HuiWen; Liu, Ming.
Afiliação
  • Zhang Y; Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China. Electronic address: 13770067799@163.com.
  • Shi W; Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China. Electronic address: ycsyswd@vip.163.com.
  • Chen R; Medical School of Nantong University, Nantong, 226007, China; Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China.
  • Gu Y; Medical School of Nantong University, Nantong, 226007, China; Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China.
  • Zhao M; Medical School of Nantong University, Nantong, 226007, China; Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China.
  • Song J; Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China.
  • Shi Z; Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China.
  • Wu J; Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China.
  • Chang H; Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China.
  • Liu M; Department of Cardiothoracic Surgery, Affiliated Hospital sixth of Nantong University, The Yancheng School of Clinical Medicine of Nanjing Medical University, Yancheng Third People's Hospital, Yancheng, 224000, China.
Transl Oncol ; 44: 101931, 2024 Jun.
Article em En | MEDLINE | ID: mdl-38599002
ABSTRACT
LncRNAs are vital regulators for lung squamous cell carcinoma (LUSC). However, the detailed role that LINC01133 plays in LUSC is unclear. This work sought to explore the potential function of LINC01133.Levels of LINC01133, miR-30d-5p, and MARCKS were separately tested in both tissues and cells using qRT-PCR. Proliferation was assessed through MTT experiment and apoptosis was detected upon flow cytometry. Transwell experiments were implemented to evaluate migratory and invasive abilities. The interaction between two genes was affirmed through luciferase reporter assay and RNA pull-down experiment. Western blotting measured the protein level of MARCKS. Animal models were established and tissues were taken for IHC analysis of MARCKS and Ki67.LINC01133 was elevated in LUSC and its downregulation could suppress proliferation, migration and invasion but induced apoptosis. LINC01133 interacted with and regulated the binding of miR-30d-5p to MARCKS. LINC01133/miR-30d-5p axis mediated proliferation, apoptosis, migration and invasion in LUSC cells, as well as modulated tumor growth in animal models. LINC01133 interacted with miR-30d-5p to modulate MARCKS expression, contributes to promoted cell proliferation, migration, invasion, and inhibited cell apoptosis in vitro, and promoted tumor growth in vivo. These findings could provide possible therapeutic targets in view of LUSC treatment in the future.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article