Your browser doesn't support javascript.
loading
Mutational rescue of the activity of high-fidelity Cas9 enzymes.
Vos, Pascal D; Gandadireja, Andrianto P; Rossetti, Giulia; Siira, Stefan J; Mantegna, Jessica L; Filipovska, Aleksandra; Rackham, Oliver.
Afiliação
  • Vos PD; Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Bi
  • Gandadireja AP; Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Bi
  • Rossetti G; Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia; Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia; Telethon K
  • Siira SJ; Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia; Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia; Telethon Kids Institute, Northern E
  • Mantegna JL; Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Bi
  • Filipovska A; ARC Centre of Excellence in Synthetic Biology, QEII Medical Centre, Nedlands, WA 6009, Australia; Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia; Telethon Kids Institute, Northern Entrance, Perth Children's Hospital, 15 Hospital Avenue, Nedlands, WA 60
  • Rackham O; Curtin Medical School, Curtin University, Bentley, WA 6102, Australia; Curtin Health Innovation Research Institute, Curtin University, Bentley, WA 6102, Australia; Harry Perkins Institute of Medical Research, QEII Medical Centre, Nedlands, WA 6009, Australia; ARC Centre of Excellence in Synthetic Bi
Cell Rep Methods ; 4(4): 100756, 2024 Apr 22.
Article em En | MEDLINE | ID: mdl-38608689
ABSTRACT
Programmable DNA endonucleases derived from bacterial genetic defense systems, exemplified by CRISPR-Cas9, have made it significantly easier to perform genomic modifications in living cells. However, unprogrammed, off-target modifications can have serious consequences, as they often disrupt the function or regulation of non-targeted genes and compromise the safety of therapeutic gene editing applications. High-fidelity mutants of Cas9 have been established to enable more accurate gene editing, but these are typically less efficient. Here, we merge the strengths of high-fidelity Cas9 and hyperactive Cas9 variants to provide an enzyme, which we dub HyperDriveCas9, that yields the desirable properties of both parents. HyperDriveCas9 functions efficiently in mammalian cells and introduces insertion and deletion mutations into targeted genomic regions while maintaining a favorable off-target profile. HyperDriveCas9 is a precise and efficient tool for gene editing applications in science and medicine.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sistemas CRISPR-Cas / Edição de Genes / Proteína 9 Associada à CRISPR Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Sistemas CRISPR-Cas / Edição de Genes / Proteína 9 Associada à CRISPR Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article