Your browser doesn't support javascript.
loading
Endothelial Protein C Receptor and Its Impact on Rheumatic Disease.
O'Hehir, Zachary Daniel; Lynch, Tom; O'Neill, Sean; March, Lyn; Xue, Meilang.
Afiliação
  • O'Hehir ZD; Sutton Arthritis Research Laboratory, Sydney Musculoskeletal Health, Kolling Institute, Faculty of Medicine and Health, The University of Sydney at Royal North Shore Hospital, Sydney, NSW 2065, Australia.
  • Lynch T; The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
  • O'Neill S; Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW 2065, Australia.
  • March L; The Australian Arthritis and Autoimmune Biobank Collaborative (A3BC), Institute of Bone and Joint Research, Kolling Institute, Faculty of Medicine and Health, University of Sydney at Royal North Shore Hospital, St Leonards, NSW 2065, Australia.
  • Xue M; Department of Rheumatology, Royal North Shore Hospital, Syndey, NSW 2065, Australia.
J Clin Med ; 13(7)2024 Mar 31.
Article em En | MEDLINE | ID: mdl-38610795
ABSTRACT
Endothelial Protein C Receptor (EPCR) is a key regulator of the activated protein C anti-coagulation pathway due to its role in the binding and activation of this protein. EPCR also binds to other ligands such as Factor VII and X, γδ T-cells, plasmodium falciparum erythrocyte membrane protein 1, and Secretory group V Phospholipases A2, facilitating ligand-specific functions. The functions of EPCR can also be regulated by soluble (s)EPCR that competes for the binding sites of membrane-bound (m)EPCR. sEPCR is created when mEPCR is shed from the cell surface. The propensity of shedding alters depending on the genetic haplotype of the EPCR gene that an individual may possess. EPCR plays an active role in normal homeostasis, anti-coagulation pathways, inflammation, and cell stemness. Due to these properties, EPCR is considered a potential effector/mediator of inflammatory diseases. Rheumatic diseases such as rheumatoid arthritis and systemic lupus erythematosus are autoimmune/inflammatory conditions that are associated with elevated EPCR levels and disease activity, potentially driven by EPCR. This review highlights the functions of EPCR and its contribution to rheumatic diseases.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article