Your browser doesn't support javascript.
loading
Orbital-Selective Mott Transition Effects and Nontrivial Topology of Iron Chalcogenide.
Kim, Minjae; Choi, Sangkook; Brito, Walber Hugo; Kotliar, Gabriel.
Afiliação
  • Kim M; Korea Institute for Advanced Study, Seoul 02455, South Korea.
  • Choi S; Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Korea.
  • Brito WH; Department of Physics and Astronomy, Rutgers University, Piscataway, New Jersey 08854, USA.
  • Kotliar G; Korea Institute for Advanced Study, Seoul 02455, South Korea.
Phys Rev Lett ; 132(13): 136504, 2024 Mar 29.
Article em En | MEDLINE | ID: mdl-38613298
ABSTRACT
The iron-based superconductor FeSe_{1-x}Te_{x} has recently gained significant attention as a host of two distinct physical phenomena (i) Majorana zero modes that can serve as potential topologically protected qubits, and (ii) a realization of the orbital-selective Mott transition. In this Letter, we connect these two phenomena and provide new insights into the interplay between strong electronic correlations and nontrivial topology in FeSe_{1-x}Te_{x}. Using linearized quasiparticle self-consistent GW plus dynamical mean-field theory, we show that the topologically protected Dirac surface state has substantial Fe(d_{xy}) character. The proximity to the orbital-selective Mott transition plays a dual role it facilitates the appearance of the topological surface state by bringing the Dirac cone close to the chemical potential but destroys the Z_{2} topological superconductivity when the system is too close to the orbital-selective Mott phase. We derive a reduced effective Hamiltonian that describes the topological band. Its parameters capture all the chemical trends found in the first principles calculation. Our findings provide a framework for further study of the interplay between strong electronic correlations and nontrivial topology in other iron-based superconductors.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article