Your browser doesn't support javascript.
loading
One-Pot Synthesis of High-Capacity Sulfur Cathodes via In-Situ Polymerization of a Porous Imine-Based Polymer.
Li, Guiping; Liu, Ye; Schultz, Thorsten; Exner, Moritz; Muydinov, Ruslan; Wang, Hui; Scheurell, Kerstin; Huang, Jieyang; Szymoniak, Paulina; Pinna, Nicola; Koch, Norbert; Adelhelm, Philipp; Bojdys, Michael J.
Afiliação
  • Li G; Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
  • Liu Y; Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
  • Schultz T; Humboldt-Universität zu Berlin, Institut für Physik, Institut für Chemie, IRIS Adlershof, Zum Großen Windkanal 2, 12489, Berlin, Germany.
  • Exner M; Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
  • Muydinov R; Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
  • Wang H; Institute for Semiconductor- and High-Frequency-System Technologies, Technische Universität Berlin, Einsteinufer 25, 10587, Berlin, Germany.
  • Scheurell K; Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
  • Huang J; Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
  • Szymoniak P; Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
  • Pinna N; Bundesanstalt für Materialforschung und-prüfung (BAM), Unter den Eichen 87, 12205, Berlin, Germany.
  • Koch N; Department of Chemistry & IRIS Adlershof, Humboldt-Universität zu Berlin, Brook-Taylor-Str. 2, 12489, Berlin, Germany.
  • Adelhelm P; Humboldt-Universität zu Berlin, Institut für Physik, Institut für Chemie, IRIS Adlershof, Zum Großen Windkanal 2, 12489, Berlin, Germany.
  • Bojdys MJ; Helmholtz-Zentrum Berlin, Hahn-Meitner-Platz 1, 14109, Berlin, Germany.
Angew Chem Int Ed Engl ; 63(28): e202400382, 2024 Jul 08.
Article em En | MEDLINE | ID: mdl-38619863
ABSTRACT
Lithium-ion batteries, essential for electronics and electric vehicles, predominantly use cathodes made from critical materials like cobalt. Sulfur-based cathodes, offering a high theoretical capacity of 1675 mAh g-1 and environmental advantages due to sulfur's abundance and lower toxicity, present a more sustainable alternative. However, state-of-the-art sulfur-based electrodes do not reach the theoretical capacities, mainly because conventional electrode production relies on mixing of components into weakly coordinated slurries. Consequently, sulfur's mobility leads to battery degradation-an effect known as the "sulfur-shuttle". This study introduces a solution by developing a microporous, covalently-bonded, imine-based polymer network grown in situ around sulfur particles on the current collector. The polymer network (i) enables selective transport of electrolyte and Li-ions through pores of defined size, and (ii) acts as a robust host to retain the active component of the electrode (sulfur species). The resulting cathode has superior rate performance from 0.1 C (1360 mAh g-1) to 3 C (807 mAh g-1). Demonstrating a high-performance, sustainable sulfur cathode produced via a simple one-pot process, our research underlines the potential of microporous polymers in addressing sulfur diffusion issues, paving the way for sulfur electrodes as viable alternatives to traditional metal-based cathodes.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article