Your browser doesn't support javascript.
loading
Orbital hybridization of donor and acceptor to enhance the conductivity of mixed-stack complexes.
Fujino, Tomoko; Kameyama, Ryohei; Onozuka, Kota; Matsuo, Kazuki; Dekura, Shun; Miyamoto, Tatsuya; Guo, Zijing; Okamoto, Hiroshi; Nakamura, Toshikazu; Yoshimi, Kazuyoshi; Kitou, Shunsuke; Arima, Taka-Hisa; Sato, Hiroyasu; Yamamoto, Kaoru; Takahashi, Akira; Sawa, Hiroshi; Nakamura, Yuiga; Mori, Hatsumi.
Afiliação
  • Fujino T; The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan. fujino@issp.u-tokyo.ac.jp.
  • Kameyama R; The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan.
  • Onozuka K; The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan.
  • Matsuo K; The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan.
  • Dekura S; The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan.
  • Miyamoto T; Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
  • Guo Z; Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
  • Okamoto H; Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
  • Nakamura T; Institute for Molecular Science, 38 Nishigo-Naka, Myodaiji, Okazaki, Aichi, 444-8585, Japan.
  • Yoshimi K; The Institute for Solid State Physics, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8581, Japan.
  • Kitou S; Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
  • Arima TH; Department of Advanced Materials Science, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba, 277-8561, Japan.
  • Sato H; RIKEN Center for Emergent Matter Science (CEMS), Wako, 351-0198, Japan.
  • Yamamoto K; Rigaku Corporation, 3-9-12 Matsubara, Akishima, Tokyo, 196-8666, Japan.
  • Takahashi A; Department of Physics, Okayama University of Science, 1-1 Ridaicho, Kita-ku, Okayama, 700-0005, Japan.
  • Sawa H; Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya, Aichi, 466-8555, Japan.
  • Nakamura Y; Department of Applied Physics, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8603, Japan.
  • Mori H; Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1, Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan.
Nat Commun ; 15(1): 3028, 2024 Apr 16.
Article em En | MEDLINE | ID: mdl-38627402
ABSTRACT
Mixed-stack complexes which comprise columns of alternating donors and acceptors are organic conductors with typically poor electrical conductivity because they are either in a neutral or highly ionic state. This indicates that conductive carriers are insufficient or are mainly localized. In this study, mixed-stack complexes that uniquely exist at the neutral-ionic boundary were synthesized by combining donors (bis(3,4-ethylenedichalcogenothiophene)) and acceptors (fluorinated tetracyanoquinodimethanes) with similar energy levels and orbital symmetry between the highest occupied molecular orbital of the donor and the lowest unoccupied molecular orbital of the acceptor. Surprisingly, the orbitals were highly hybridized in the single-crystal complexes, enhancing the room-temperature conductivity (10-4-0.1 S cm-1) of mixed-stack complexes. Specifically, the maximum conductivity was the highest reported for single-crystal mixed-stack complexes under ambient pressures. The unique electronic structures at the neutral-ionic boundary exhibited structural perturbations between their electron-itinerant and localized states, causing abrupt temperature-dependent changes in their electrical, optical, dielectric, and magnetic properties.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article