Your browser doesn't support javascript.
loading
Enhanced Nonlinear Response by Manipulating the Dirac Point at the (111) LaTiO_{3}/SrTiO_{3} Interface.
Tuvia, G; Burshtein, A; Silber, I; Aharony, A; Entin-Wohlman, O; Goldstein, M; Dagan, Y.
Afiliação
  • Tuvia G; School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel.
  • Burshtein A; School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel.
  • Silber I; School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel.
  • Aharony A; School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel.
  • Entin-Wohlman O; School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel.
  • Goldstein M; School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel.
  • Dagan Y; School of Physics and Astronomy, Tel-Aviv University, Tel Aviv 6997801, Israel.
Phys Rev Lett ; 132(14): 146301, 2024 Apr 05.
Article em En | MEDLINE | ID: mdl-38640380
ABSTRACT
Tunable spin-orbit interaction (SOI) is an important feature for future spin-based devices. In the presence of a magnetic field, SOI induces an asymmetry in the energy bands, which can produce nonlinear transport effects (V∼I^{2}). Here, we focus on such effects to study the role of SOI in the (111) LaTiO_{3}/SrTiO_{3} interface. This system is a convenient platform for understanding the role of SOI since it exhibits a single-band Hall response through the entire gate-voltage range studied. We report a pronounced rise in the nonlinear longitudinal resistance at a critical in-plane field H_{cr}. This rise disappears when a small out-of-plane field component is present. We explain these results by considering the location of the Dirac point formed at the crossing of the spin-split energy bands. An in-plane magnetic field pushes this point outside of the Fermi contour, and consequently changes the symmetry of the Fermi contours and intensifies the nonlinear transport. An out-of-plane magnetic field opens a gap at the Dirac point, thereby significantly diminishing the nonlinear effects. We propose that magnetoresistance effects previously reported in interfaces with SOI could be comprehended within our suggested scenario.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article