Your browser doesn't support javascript.
loading
Oxygen Vacancies Boosted Hydronium Intercalation: A Paradigm Shift in Aluminum-Based Batteries.
Huang, Chengxiang; Jiang, Zhou; Liu, Fuxi; Li, Wenwen; Liang, Qing; Zhao, Zhenzhen; Ge, Xin; Song, Kexin; Zheng, Lirong; Zhou, Xinyan; Qiao, Sifan; Zhang, Wei; Zheng, Weitao.
Afiliação
  • Huang C; Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High Efficiency Clean Energy Materials, Jilin University, Changc
  • Jiang Z; Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High Efficiency Clean Energy Materials, Jilin University, Changc
  • Liu F; Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High Efficiency Clean Energy Materials, Jilin University, Changc
  • Li W; Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High Efficiency Clean Energy Materials, Jilin University, Changc
  • Liang Q; Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High Efficiency Clean Energy Materials, Jilin University, Changc
  • Zhao Z; Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High Efficiency Clean Energy Materials, Jilin University, Changc
  • Ge X; Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High Efficiency Clean Energy Materials, Jilin University, Changc
  • Song K; Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High Efficiency Clean Energy Materials, Jilin University, Changc
  • Zheng L; Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, China.
  • Zhou X; Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High Efficiency Clean Energy Materials, Jilin University, Changc
  • Qiao S; Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High Efficiency Clean Energy Materials, Jilin University, Changc
  • Zhang W; Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High Efficiency Clean Energy Materials, Jilin University, Changc
  • Zheng W; Key Laboratory of Automobile Materials MOE, and School of Materials Science & Engineering, and Electron Microscopy Center, and International Center of Future Science, and Jilin Provincial International Cooperation Key Laboratory of High Efficiency Clean Energy Materials, Jilin University, Changc
Angew Chem Int Ed Engl ; 63(26): e202405592, 2024 Jun 21.
Article em En | MEDLINE | ID: mdl-38647330
ABSTRACT
In aqueous aluminum-ion batteries (AAIBs), the insertion/extraction chemistry of Al3+ often leads to poor kinetics, whereas the rapid diffusion kinetics of hydronium ions (H3O+) may offer the solution. However, the presence of considerable Al3+ in the electrolyte hinders the insertion reaction of H3O+. Herein, we report how oxygen-deficient α-MoO3 nanosheets unlock selective H3O+ insertion in a mild aluminum-ion electrolyte. The abundant oxygen defects impede the insertion of Al3+ due to excessively strong adsorption, while allowing H3O+ to be inserted/diffused through the Grotthuss proton conduction mechanism. This research advances our understanding of the mechanism behind selective H3O+ insertion in mild electrolytes.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article