Your browser doesn't support javascript.
loading
Calcium-Dependent Regulation of Neuronal Excitability Is Rescued in Fragile X Syndrome by a Tat-Conjugated N-Terminal Fragment of FMRP.
Zhan, Xiaoqin; Asmara, Hadhimulya; Pfaffinger, Paul; Turner, Ray W.
Afiliação
  • Zhan X; Hotchkiss Brain Institute, Baylor College of Medicine, Houston, Texas 77030.
  • Asmara H; Alberta Children's Hospital Research Institute, Baylor College of Medicine, Houston, Texas 77030.
  • Pfaffinger P; Hotchkiss Brain Institute, Baylor College of Medicine, Houston, Texas 77030.
  • Turner RW; Alberta Children's Hospital Research Institute, Baylor College of Medicine, Houston, Texas 77030.
J Neurosci ; 44(21)2024 May 22.
Article em En | MEDLINE | ID: mdl-38664011
ABSTRACT
Fragile X syndrome (FXS) arises from the loss of fragile X messenger ribonucleoprotein (FMRP) needed for normal neuronal excitability and circuit functions. Recent work revealed that FMRP contributes to mossy fiber long-term potentiation by adjusting the Kv4 A-type current availability through interactions with a Cav3-Kv4 ion channel complex, yet the mechanism has not yet been defined. In this study using wild-type and Fmr1 knock-out (KO) tsA-201 cells and cerebellar sections from male Fmr1 KO mice, we show that FMRP associates with all subunits of the Cav3.1-Kv4.3-KChIP3 complex and is critical to enabling calcium-dependent shifts in Kv4.3 inactivation to modulate the A-type current. Specifically, upon depolarization Cav3 calcium influx activates dual-specific phosphatase 1/6 (DUSP1/6) to deactivate ERK1/2 (ERK) and lower phosphorylation of Kv4.3, a signaling pathway that does not function in Fmr1 KO cells. In Fmr1 KO mouse tissue slices, cerebellar granule cells exhibit a hyperexcitable response to membrane depolarizations. Either incubating Fmr1 KO cells or in vivo administration of a tat-conjugated FMRP N-terminus fragment (FMRP-N-tat) rescued Cav3-Kv4 function and granule cell excitability, with a decrease in the level of DUSP6. Together these data reveal a Cav3-activated DUSP signaling pathway critical to the function of a FMRP-Cav3-Kv4 complex that is misregulated in Fmr1 KO conditions. Moreover, FMRP-N-tat restores function of this complex to rescue calcium-dependent control of neuronal excitability as a potential therapeutic approach to alleviating the symptoms of FXS.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cálcio / Camundongos Knockout / Proteína do X Frágil da Deficiência Intelectual / Síndrome do Cromossomo X Frágil / Neurônios Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Cálcio / Camundongos Knockout / Proteína do X Frágil da Deficiência Intelectual / Síndrome do Cromossomo X Frágil / Neurônios Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article