Your browser doesn't support javascript.
loading
Phytoplankton-derived polysaccharides and microbial peptidoglycans are key nutrients for deep-sea microbes in the Mariana Trench.
Dang, Yan-Ru; Cha, Qian-Qian; Liu, Sha-Sha; Wang, Shu-Yan; Li, Ping-Yi; Li, Chun-Yang; Wang, Peng; Chen, Xiu-Lan; Tian, Ji-Wei; Xin, Yu; Chen, Yin; Zhang, Yu-Zhong; Qin, Qi-Long.
Afiliação
  • Dang YR; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
  • Cha QQ; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
  • Liu SS; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
  • Wang SY; College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
  • Li PY; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
  • Li CY; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China.
  • Wang P; College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
  • Chen XL; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China.
  • Tian JW; College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
  • Xin Y; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China.
  • Chen Y; State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China.
  • Zhang YZ; Laboratory for Marine Biology and Biotechnology, National Laboratory for Marine Science and Technology, Qingdao, China.
  • Qin QL; College of Marine Life Sciences & Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, China.
Microbiome ; 12(1): 77, 2024 Apr 25.
Article em En | MEDLINE | ID: mdl-38664737
ABSTRACT

BACKGROUND:

The deep sea represents the largest marine ecosystem, driving global-scale biogeochemical cycles. Microorganisms are the most abundant biological entities and play a vital role in the cycling of organic matter in such ecosystems. The primary food source for abyssal biota is the sedimentation of particulate organic polymers. However, our knowledge of the specific biopolymers available to deep-sea microbes remains largely incomplete. One crucial rate-limiting step in organic matter cycling is the depolymerization of particulate organic polymers facilitated by extracellular enzymes (EEs). Therefore, the investigation of active EEs and the microbes responsible for their production is a top priority to better understand the key nutrient sources for deep-sea microbes.

RESULTS:

In this study, we conducted analyses of extracellular enzymatic activities (EEAs), metagenomics, and metatranscriptomics from seawater samples of 50-9305 m from the Mariana Trench. While a diverse array of microbial groups was identified throughout the water column, only a few exhibited high levels of transcriptional activities. Notably, microbial populations actively transcribing EE genes involved in biopolymer processing in the abyssopelagic (4700 m) and hadopelagic zones (9305 m) were primarily associated with the class Actinobacteria. These microbes actively transcribed genes coding for enzymes such as cutinase, laccase, and xyloglucanase which are capable of degrading phytoplankton polysaccharides as well as GH23 peptidoglycan lyases and M23 peptidases which have the capacity to break down peptidoglycan. Consequently, corresponding enzyme activities including glycosidases, esterase, and peptidases can be detected in the deep ocean. Furthermore, cell-specific EEAs increased at 9305 m compared to 4700 m, indicating extracellular enzymes play a more significant role in nutrient cycling in the deeper regions of the Mariana Trench.

CONCLUSIONS:

Transcriptomic analyses have shed light on the predominant microbial population actively participating in organic matter cycling in the deep-sea environment of the Mariana Trench. The categories of active EEs suggest that the complex phytoplankton polysaccharides (e.g., cutin, lignin, and hemicellulose) and microbial peptidoglycans serve as the primary nutrient sources available to deep-sea microbes. The high cell-specific EEA observed in the hadal zone underscores the robust polymer-degrading capacities of hadal microbes even in the face of the challenging conditions they encounter in this extreme environment. These findings provide valuable new insights into the sources of nutrition, the key microbes, and the EEs crucial for biopolymer degradation in the deep seawater of the Mariana Trench. Video Abstract.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fitoplâncton / Polissacarídeos / Água do Mar / Bactérias / Peptidoglicano / Nutrientes / Metagenômica Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fitoplâncton / Polissacarídeos / Água do Mar / Bactérias / Peptidoglicano / Nutrientes / Metagenômica Idioma: En Ano de publicação: 2024 Tipo de documento: Article