Your browser doesn't support javascript.
loading
Limited genomic signatures of population collapse in the critically endangered black abalone (Haliotis cracherodii).
Wooldridge, Brock; Orland, Chloé; Enbody, Erik; Escalona, Merly; Mirchandani, Cade; Corbett-Detig, Russell; Kapp, Joshua D; Fletcher, Nathaniel; Cox-Ammann, Karah; Raimondi, Peter; Shapiro, Beth.
Afiliação
  • Wooldridge B; Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, California, USA.
  • Orland C; Howard Hughes Medical Institute, University of California Santa Cruz, Santa Cruz, California, USA.
  • Enbody E; Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, California, USA.
  • Escalona M; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA.
  • Mirchandani C; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA.
  • Corbett-Detig R; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA.
  • Kapp JD; Department of Biomolecular Engineering, University of California Santa Cruz, Santa Cruz, California, USA.
  • Fletcher N; Genomics Institute, University of California Santa Cruz, Santa Cruz, California, USA.
  • Cox-Ammann K; Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, California, USA.
  • Raimondi P; Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, California, USA.
  • Shapiro B; Ecology and Evolutionary Biology Department, University of California Santa Cruz, Santa Cruz, California, USA.
Mol Ecol ; : e17362, 2024 Apr 29.
Article em En | MEDLINE | ID: mdl-38682494
ABSTRACT
The black abalone, Haliotis cracherodii, is a large, long-lived marine mollusc that inhabits rocky intertidal habitats along the coast of California and Mexico. In 1985, populations were impacted by a bacterial disease known as withering syndrome (WS) that wiped out >90% of individuals, leading to the closure of all U.S. black abalone fisheries since 1993. Current conservation strategies include restoring diminished populations by translocating healthy individuals. However, population collapse on this scale may have dramatically lowered genetic diversity and strengthened geographic differentiation, making translocation-based recovery contentious. Additionally, the current prevalence of WS remains unknown. To address these uncertainties, we sequenced and analysed the genomes of 133 black abalone individuals from across their present range. We observed no spatial genetic structure among black abalone, with the exception of a single chromosomal inversion that increases in frequency with latitude. Outside the inversion, genetic differentiation between sites is minimal and does not scale with either geographic distance or environmental dissimilarity. Genetic diversity appears uniformly high across the range. Demographic inference does indicate a severe population bottleneck beginning just 15 generations in the past, but this decline is short lived, with present-day size far exceeding the pre-bottleneck status quo. Finally, we find the bacterial agent of WS is equally present across the sampled range, but only in 10% of individuals. The lack of population genetic structure, uniform diversity and prevalence of WS bacteria indicates that translocation could be a valid and low-risk means of population restoration for black abalone species' recovery.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article