Your browser doesn't support javascript.
loading
IGF1 promotes human myotube differentiation toward a mature metabolic and contractile phenotype.
Dreher, Simon I; Grubba, Paul; von Toerne, Christine; Moruzzi, Alessia; Maurer, Jennifer; Goj, Thomas; Birkenfeld, Andreas L; Peter, Andreas; Loskill, Peter; Hauck, Stefanie M; Weigert, Cora.
Afiliação
  • Dreher SI; Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany.
  • Grubba P; Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany.
  • von Toerne C; Metabolomics and Proteomics Core Helmholtz Center Munich, German Research Center for Environmental Health, Neuherberg, Germany.
  • Moruzzi A; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany.
  • Maurer J; Department for Microphysiological Systems, Institute of Biomedical Engineering, Faculty of Medicine, Eberhard Karls University Tübingen, Tübingen, Germany.
  • Goj T; Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany.
  • Birkenfeld AL; Department for Diagnostic Laboratory Medicine, Institute for Clinical Chemistry and Pathobiochemistry, University Hospital Tübingen, Tübingen, Germany.
  • Peter A; German Center for Diabetes Research (DZD), Neuherberg, Germany.
  • Loskill P; German Center for Diabetes Research (DZD), Neuherberg, Germany.
  • Hauck SM; Institute for Diabetes Research and Metabolic Diseases of the Helmholtz Zentrum München, University of Tübingen, Tübingen, Germany.
  • Weigert C; Department of Internal Medicine IV, University Hospital Tübingen, Tübingen, Germany.
Am J Physiol Cell Physiol ; 326(5): C1462-C1481, 2024 05 01.
Article em En | MEDLINE | ID: mdl-38690930
ABSTRACT
Skeletal muscle mediates the beneficial effects of exercise, thereby improving insulin sensitivity and reducing the risk for type 2 diabetes. Current human skeletal muscle models in vitro are incapable of fully recapitulating its physiological functions especially muscle contractility. By supplementation of insulin-like growth factor 1 (IGF1), a growth factor secreted by myofibers in vivo, we aimed to overcome these limitations. We monitored the differentiation process starting from primary human CD56-positive myoblasts in the presence/absence of IGF1 in serum-free medium in daily collected samples for 10 days. IGF1-supported differentiation formed thicker multinucleated myotubes showing physiological contraction upon electrical pulse stimulation (EPS) following day 6. Myotubes without IGF1 were almost incapable of contraction. IGF1 treatment shifted the proteome toward skeletal muscle-specific proteins that contribute to myofibril and sarcomere assembly, striated muscle contraction, and ATP production. Elevated PPARGC1A, MYH7, and reduced MYH1/2 suggest a more oxidative phenotype further demonstrated by higher abundance of proteins of the respiratory chain and elevated mitochondrial respiration. IGF1-treatment also upregulated glucose transporter (GLUT)4 and increased insulin-dependent glucose uptake compared with myotubes differentiated without IGF1. To conclude, addition of IGF1 to serum-free medium significantly improves the differentiation of human myotubes that showed enhanced myofibril formation, response to electrical pulse stimulation, oxidative respiratory capacity, and glucose metabolism overcoming limitations of previous standards. This novel protocol enables investigation of muscular exercise on a molecular level.NEW & NOTEWORTHY Human skeletal muscle models are highly valuable to study how exercise prevents type 2 diabetes without invasive biopsies. Current models did not fully recapitulate the function of skeletal muscle especially during exercise. By supplementing insulin-like growth factor 1 (IGF1), the authors developed a functional human skeletal muscle model characterized by inducible contractility and increased oxidative and insulin-sensitive metabolism. The novel protocol overcomes the limitations of previous standards and enables investigation of exercise on a molecular level.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenótipo / Fator de Crescimento Insulin-Like I / Diferenciação Celular / Fibras Musculares Esqueléticas / Contração Muscular Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Fenótipo / Fator de Crescimento Insulin-Like I / Diferenciação Celular / Fibras Musculares Esqueléticas / Contração Muscular Limite: Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article