Combining principal component analysis and logistic regression for multifactorial fall risk prediction among community-dwelling older adults.
Geriatr Nurs
; 57: 208-216, 2024.
Article
em En
| MEDLINE
| ID: mdl-38696878
ABSTRACT
Falls require comprehensive assessment in older adults due to their diverse risk factors. This study aimed to develop an effective fall risk prediction model for community-dwelling older adults by integrating principal component analysis (PCA) with machine learning. Data were collected for 45 fall-related variables from 1630 older adults in Taiwan, and models were developed using PCA and logistic regression. The optimal model, PCA with stepwise logistic regression, had an area under the receiver operating characteristic curve of 0.78, sensitivity of 74 %, specificity of 70 %, and accuracy of 71 %. While dimensionality reduction via PCA is not essential, it aids practicality. Our framework combines PCA and logistic regression, providing a reliable method for fall risk prediction to support consistent screening and targeted health promotion. The key innovation is using PCA prior to logistic regression, overcoming conventional limitations. This offers an effective community-based fall screening tool for older adults.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Acidentes por Quedas
/
Análise de Componente Principal
/
Vida Independente
Limite:
Aged
/
Aged80
/
Female
/
Humans
/
Male
País/Região como assunto:
Asia
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article