Your browser doesn't support javascript.
loading
Learning interpretable causal networks from very large datasets, application to 400,000 medical records of breast cancer patients.
Ribeiro-Dantas, Marcel da Câmara; Li, Honghao; Cabeli, Vincent; Dupuis, Louise; Simon, Franck; Hettal, Liza; Hamy, Anne-Sophie; Isambert, Hervé.
Afiliação
  • Ribeiro-Dantas MDC; CNRS UMR168, Institut Curie, Université PSL, Sorbonne Université, Paris, France.
  • Li H; CNRS UMR168, Institut Curie, Université PSL, Sorbonne Université, Paris, France.
  • Cabeli V; CNRS UMR168, Institut Curie, Université PSL, Sorbonne Université, Paris, France.
  • Dupuis L; CNRS UMR168, Institut Curie, Université PSL, Sorbonne Université, Paris, France.
  • Simon F; CNRS UMR168, Institut Curie, Université PSL, Sorbonne Université, Paris, France.
  • Hettal L; CNRS UMR168, Institut Curie, Université PSL, Sorbonne Université, Paris, France.
  • Hamy AS; INSERM U932, Institut Curie, Paris, France.
  • Isambert H; Department of Medical Oncology, Institut Curie, Saint-Cloud, France.
iScience ; 27(5): 109736, 2024 May 17.
Article em En | MEDLINE | ID: mdl-38711452
ABSTRACT
Discovering causal effects is at the core of scientific investigation but remains challenging when only observational data are available. In practice, causal networks are difficult to learn and interpret, and limited to relatively small datasets. We report a more reliable and scalable causal discovery method (iMIIC), based on a general mutual information supremum principle, which greatly improves the precision of inferred causal relations while distinguishing genuine causes from putative and latent causal effects. We showcase iMIIC on synthetic and real-world healthcare data from 396,179 breast cancer patients from the US Surveillance, Epidemiology, and End Results program. More than 90% of predicted causal effects appear correct, while the remaining unexpected direct and indirect causal effects can be interpreted in terms of diagnostic procedures, therapeutic timing, patient preference or socio-economic disparity. iMIIC's unique capabilities open up new avenues to discover reliable and interpretable causal networks across a range of research fields.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article