Your browser doesn't support javascript.
loading
Assessment of Biomedical Waste Generation in Dialysis Units: A Prospective Observational Study-Is it Time for "Green Dialysis"?
Sahay, Manisha; Sahay, Rakesh K; Seshadri, B; Ismal, Kiranmai; Kavadi, Anuradha; Enganti, Rama.
Afiliação
  • Sahay M; Professor and Head, Department of Nephrology, Osmania Medical College, Hyderabad, Telangana, India, Corresponding Author.
  • Sahay RK; Professor and Head, Department of Endocrinology, Osmania Medical College, Hyderabad, Telangana, India.
  • Seshadri B; Civil Surgeon, RMO, Department of Nephrology, Osmania Medical College, Hyderabad, Telangana, India.
  • Ismal K; Professor, Department of Nephrology, Osmania Medical College, Hyderabad, Telangana, India.
  • Kavadi A; Assistant, Professor, Department of Nephrology, Osmania Medical College, Hyderabad, Telangana, India.
  • Enganti R; Assistant, Professor, Department of Nephrology, Osmania Medical College, Hyderabad, Telangana, India.
J Assoc Physicians India ; 71(10): 49-52, 2023 Oct.
Article em En | MEDLINE | ID: mdl-38716524
ABSTRACT

Introduction:

Chronic kidney disease and as a consequence end-stage kidney disease (EKSD) is increasing globally. More and more people across the world are requiring hemodialysis (HD). The HD procedure produces a large quantity of biomedical waste. In addition, HD consumes a large quantity of water. In this study, we estimated the waste generated from our government-funded HD unit. Materials and

methods:

It is a prospective study that was carried out in the dialysis unit in the nephrology department over a period of 1 year. The daily dialysis waste generated by the unit was measured using a spring balance. The proportion of plastic and nonplastic waste was determined. The quantity of biomedical waste generated per person in 1 year was calculated. Water input to the dialysis unit was noted. Water consumption per dialysis was calculated. Liquid chemical waste consumed was determined. Electricity consumed by the unit was measured by the electricity meter. The cost of waste disposal was calculated. The cost of electricity consumption and water consumption was also calculated.

Results:

The approximate weight of waste disposables generated in one dialysis was 0.75 kg. Approximately each person generates 1.29 kg of waste per dialysis. Each dialysis required 125 L of reverse osmosis (RO) water and to generate 125 L of RO water 250 L of raw water was used. This happens as 125 L of water are rejected during the generation of 125 L of RO water. Thus, the net water consumption for each dialysis was 250 L. Chemical waste generated per dialysis includes 90 mL citric acid per dialysis and 130 mL bleach. Each dialysis consumes 3 kWh (three units) of electricity. The cost of electricity for each dialysis was 25.5 INR and the cost of water was 25 INR per dialysis. The cost of waste disposal for each dialysis bed was 6 INR.

Discussion:

Each dialysis patient produced 1.29 kg of waste per dialysis which was like other studies. Unlike other studies, the waste was not being reprocessed or recycled.

Conclusion:

Hemodialysis produces substantial biomedical waste. Proper waste disposal techniques and policies to promote reduction, reuse, and recycling will go a long way toward promoting green dialysis and reducing environmental as well as economic burdens. How to cite this article Sahay M, Sahay RK, Seshadri B, et al. Assessment of Biomedical Waste Generation in Dialysis Units A Prospective Observational Study-Is it Time for "Green Dialysis"? J Assoc Physicians India 2023;71(10)49-52.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diálise Renal / Eliminação de Resíduos de Serviços de Saúde Limite: Humans País/Região como assunto: Asia Idioma: En Ano de publicação: 2023 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Diálise Renal / Eliminação de Resíduos de Serviços de Saúde Limite: Humans País/Região como assunto: Asia Idioma: En Ano de publicação: 2023 Tipo de documento: Article