Enhanced Herbicide Metabolism and Target Site Mutation Enabled the Multiple Resistance to Cyhalofop-butyl, Florpyrauxifen-benzyl, and Penoxsulam in Echinochloa crus-galli.
J Agric Food Chem
; 72(20): 11405-11414, 2024 May 22.
Article
em En
| MEDLINE
| ID: mdl-38717990
ABSTRACT
This study investigated the multiple herbicide resistance (MHR) mechanism of one Echinochloa crus-galli population that was resistant to florpyrauxifen-benzyl (FPB), cyhalofop-butyl (CHB), and penoxsulam (PEX). This population carried an Ala-122-Asn mutation in the acetolactate synthase (ALS) gene but no mutation in acetyl-CoA carboxylase (ACCase) and transport inhibitor response1 (TIR1) genes. The metabolism rate of PEX was 2-fold higher, and the production of florpyrauxifen-acid and cyhalofop-acid was lower in the resistant population. Malathion and 4-chloro-7-nitrobenzoxadiazole (NBD-Cl) could reverse the resistance, suggesting that cytochrome P450 (CYP450) and glutathione S-transferase (GST) contribute to the enhanced metabolism. According to RNA-seq and qRT-PCR validation, two CYP450 genes (CYP71C42 and CYP71D55), one GST gene (GSTT2), two glycosyltransferase genes (rhamnosyltransferase 1 and IAAGLU), and two ABC transporter genes (ABCG1 and ABCG25) were induced by CHB, FPB, and PEX in the resistant population. This study revealed that the target mutant and enhanced metabolism were involved in the MHR mechanism in E. crus-galli.
Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Proteínas de Plantas
/
Sistema Enzimático do Citocromo P-450
/
Echinochloa
/
Resistência a Herbicidas
/
Herbicidas
/
Mutação
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article