Your browser doesn't support javascript.
loading
Development of a machine learning-based model to predict prognosis of alpha-fetoprotein-positive hepatocellular carcinoma.
Dong, Bingtian; Zhang, Hua; Duan, Yayang; Yao, Senbang; Chen, Yongjian; Zhang, Chaoxue.
Afiliação
  • Dong B; Department of Ultrasound, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
  • Zhang H; Department of Ultrasound, Affiliated Hangzhou First People's Hospital, School of Medicine, Westlake University, Hangzhou, China.
  • Duan Y; Department of Ultrasound, the First Affiliated Hospital of Anhui Medical University, Hefei, China.
  • Yao S; Department of Oncology, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
  • Chen Y; Department of Oncology, Anhui Medical University, Hefei, Anhui, China.
  • Zhang C; Department of Ultrasound, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China. 962106486@qq.com.
J Transl Med ; 22(1): 455, 2024 May 13.
Article em En | MEDLINE | ID: mdl-38741163
ABSTRACT

BACKGROUND:

Patients with alpha-fetoprotein (AFP)-positive hepatocellular carcinoma (HCC) have aggressive biological behavior and poor prognosis. Therefore, survival time is one of the greatest concerns for patients with AFP-positive HCC. This study aimed to demonstrate the utilization of six machine learning (ML)-based prognostic models to predict overall survival of patients with AFP-positive HCC.

METHODS:

Data on patients with AFP-positive HCC were extracted from the Surveillance, Epidemiology, and End Results database. Six ML algorithms (extreme gradient boosting [XGBoost], logistic regression [LR], support vector machine [SVM], random forest [RF], K-nearest neighbor [KNN], and decision tree [ID3]) were used to develop the prognostic models of patients with AFP-positive HCC at one year, three years, and five years. Area under the receiver operating characteristic curve (AUC), confusion matrix, calibration curves, and decision curve analysis (DCA) were used to evaluate the model.

RESULTS:

A total of 2,038 patients with AFP-positive HCC were included for analysis. The 1-, 3-, and 5-year overall survival rates were 60.7%, 28.9%, and 14.3%, respectively. Seventeen features regarding demographics and clinicopathology were included in six ML algorithms to generate a prognostic model. The XGBoost model showed the best performance in predicting survival at 1-year (train set AUC = 0.771; test set AUC = 0.782), 3-year (train set AUC = 0.763; test set AUC = 0.749) and 5-year (train set AUC = 0.807; test set AUC = 0.740). Furthermore, for 1-, 3-, and 5-year survival prediction, the accuracy in the training and test sets was 0.709 and 0.726, 0.721 and 0.726, and 0.778 and 0.784 for the XGBoost model, respectively. Calibration curves and DCA exhibited good predictive performance as well.

CONCLUSIONS:

The XGBoost model exhibited good predictive performance, which may provide physicians with an effective tool for early medical intervention and improve the survival of patients.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Alfa-Fetoproteínas / Carcinoma Hepatocelular / Aprendizado de Máquina / Neoplasias Hepáticas Limite: Female / Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Alfa-Fetoproteínas / Carcinoma Hepatocelular / Aprendizado de Máquina / Neoplasias Hepáticas Limite: Female / Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article