Development of a machine learning-based model to predict prognosis of alpha-fetoprotein-positive hepatocellular carcinoma.
J Transl Med
; 22(1): 455, 2024 May 13.
Article
em En
| MEDLINE
| ID: mdl-38741163
ABSTRACT
BACKGROUND:
Patients with alpha-fetoprotein (AFP)-positive hepatocellular carcinoma (HCC) have aggressive biological behavior and poor prognosis. Therefore, survival time is one of the greatest concerns for patients with AFP-positive HCC. This study aimed to demonstrate the utilization of six machine learning (ML)-based prognostic models to predict overall survival of patients with AFP-positive HCC.METHODS:
Data on patients with AFP-positive HCC were extracted from the Surveillance, Epidemiology, and End Results database. Six ML algorithms (extreme gradient boosting [XGBoost], logistic regression [LR], support vector machine [SVM], random forest [RF], K-nearest neighbor [KNN], and decision tree [ID3]) were used to develop the prognostic models of patients with AFP-positive HCC at one year, three years, and five years. Area under the receiver operating characteristic curve (AUC), confusion matrix, calibration curves, and decision curve analysis (DCA) were used to evaluate the model.RESULTS:
A total of 2,038 patients with AFP-positive HCC were included for analysis. The 1-, 3-, and 5-year overall survival rates were 60.7%, 28.9%, and 14.3%, respectively. Seventeen features regarding demographics and clinicopathology were included in six ML algorithms to generate a prognostic model. The XGBoost model showed the best performance in predicting survival at 1-year (train set AUC = 0.771; test set AUC = 0.782), 3-year (train set AUC = 0.763; test set AUC = 0.749) and 5-year (train set AUC = 0.807; test set AUC = 0.740). Furthermore, for 1-, 3-, and 5-year survival prediction, the accuracy in the training and test sets was 0.709 and 0.726, 0.721 and 0.726, and 0.778 and 0.784 for the XGBoost model, respectively. Calibration curves and DCA exhibited good predictive performance as well.CONCLUSIONS:
The XGBoost model exhibited good predictive performance, which may provide physicians with an effective tool for early medical intervention and improve the survival of patients.Palavras-chave
Texto completo:
1
Coleções:
01-internacional
Base de dados:
MEDLINE
Assunto principal:
Alfa-Fetoproteínas
/
Carcinoma Hepatocelular
/
Aprendizado de Máquina
/
Neoplasias Hepáticas
Limite:
Female
/
Humans
/
Male
Idioma:
En
Ano de publicação:
2024
Tipo de documento:
Article