Your browser doesn't support javascript.
loading
Gemcitabine-Phospholipid Complex Loaded Lipid Nanoparticles for Improving Drug Loading, Stability, and Efficacy against Pancreatic Cancer.
Dora, Chander Parkash; Kushwah, Varun; Yadav, Vivek; Kuche, Kaushik; Jain, Sanyog.
Afiliação
  • Dora CP; Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, sector-67, Mohali, Punjab 160062, India.
  • Kushwah V; Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, sector-67, Mohali, Punjab 160062, India.
  • Yadav V; Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, sector-67, Mohali, Punjab 160062, India.
  • Kuche K; Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, sector-67, Mohali, Punjab 160062, India.
  • Jain S; Centre for Pharmaceutical Nanotechnology, Department of Pharmaceutics, National Institute of Pharmaceutical Education and Research (NIPER), S.A.S. Nagar, sector-67, Mohali, Punjab 160062, India.
Mol Pharm ; 21(6): 2699-2712, 2024 Jun 03.
Article em En | MEDLINE | ID: mdl-38747900
ABSTRACT
This study aims to encapsulate gemcitabine (GEM) using a phospholipid complex (PLC) in lipid nanoparticles (NPs) to achieve several desirable outcomes, including high drug loading, uniform particle size, improved therapeutic efficacy, and reduced toxicities. The successful preparation of GEM-loaded lipid NPs (GEM-NPs) was accomplished using the emulsification-solidification method, following optimization through Box-Behnken design. The size of the GEM-NP was 138.5 ± 6.7 nm, with a low polydispersity index of 0.282 ± 0.078, as measured by a zetasizer and confirmed by transmission electron and atomic force microscopy. GEM-NPs demonstrated sustained release behavior, surpassing the performance of the free GEM and phospholipid complex. Moreover, GEM-NPs exhibited enhanced cytotoxicity, apoptosis, and cell uptake in Panc-2 and Mia PaCa cells compared to the free GEM. The in vivo pharmacokinetics revealed approximately 4-fold higher bioavailability of GEM-NPs in comparison with free GEM. Additionally, the pharmacodynamic evaluation conducted in a DMBA-induced pancreatic cancer model, involving histological examination, serum IL-6 level estimation, and expression of cleaved caspase-3, showed the potential of GEM-NPs in the management of pancreatic cancer. Consequently, the lipid NP-based approach developed in our investigation demonstrates high stability and uniformity and holds promise for enhancing the therapeutic outcomes of GEM.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Pancreáticas / Fosfolipídeos / Desoxicitidina / Nanopartículas / Gencitabina Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Neoplasias Pancreáticas / Fosfolipídeos / Desoxicitidina / Nanopartículas / Gencitabina Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article