Your browser doesn't support javascript.
loading
Mechanism of Peroxynitrite Interaction with Ferric M. tuberculosis Nitrobindin: A Computational Study.
Messias, Andresa; Capece, Luciana; De Simone, Giovanna; Coletta, Massimo; Ascenzi, Paolo; Estrin, Darío A.
Afiliação
  • Messias A; Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EHA Buenos Aires, Argentina.
  • Capece L; CONICET - Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina.
  • De Simone G; Facultad de Ciencias Exactas y Naturales, Departamento de Química Inorgánica, Analítica y Química Física, Universidad de Buenos Aires, Intendente Güiraldes 2160, C1428EHA Buenos Aires, Argentina.
  • Coletta M; CONICET - Universidad de Buenos Aires, Instituto de Química-Física de los Materiales, Medio Ambiente y Energía (INQUIMAE), Ciudad Universitaria, Pabellón 2, C1428EHA Buenos Aires, Argentina.
  • Ascenzi P; Department of Sciences, Roma Tre University, Viale G. Marconi, 446, I-00146 Roma, Italy.
  • Estrin DA; IRCCS Fondazione Bietti, Via Santo Stefano Rotondo, 6, 00184 Roma, Italy.
Inorg Chem ; 63(21): 9907-9918, 2024 May 27.
Article em En | MEDLINE | ID: mdl-38754069
ABSTRACT
Nitrobindins (Nbs) are all-ß-barrel heme proteins present along the evolutionary ladder. They display a highly solvent-exposed ferric heme group with the iron atom being coordinated by the proximal His residue and a water molecule at the distal position. Ferric nitrobindins (Nb(III)) play a role in the conversion of toxic peroxynitrite (ONOO-) to harmless nitrate, with the value of the second-order rate constant being similar to those of most heme proteins. The value of the second-order rate constant of Nbs increases as the pH decreases; this suggests that Nb(III) preferentially reacts with peroxynitrous acid (ONOOH), although ONOO- is more nucleophilic. In this work, we shed light on the molecular basis of the ONOO- and ONOOH reactivity of ferric Mycobacterium tuberculosis Nb (Mt-Nb(III)) by dissecting the ligand migration toward the active site, the water molecule release, and the ligand binding process by computer simulations. Classical molecular dynamics simulations were performed by employing a steered molecular dynamics approach and the Jarzynski equality to obtain ligand migration free energy profiles for both ONOO- and ONOOH. Our results indicate that ONOO- and ONOOH migration is almost unhindered, consistent with the exposed metal center of Mt-Nb(III). To further analyze the ligand binding process, we computed potential energy profiles for the displacement of the Fe(III)-coordinated water molecule using a hybrid QM/MM scheme at the DFT level and a nudged elastic band approach. These results indicate that ONOO- exhibits a much larger barrier for ligand displacement than ONOOH, suggesting that water displacement is assisted by protonation of the leaving group by the incoming ONOOH.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácido Peroxinitroso / Simulação de Dinâmica Molecular / Mycobacterium tuberculosis Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Ácido Peroxinitroso / Simulação de Dinâmica Molecular / Mycobacterium tuberculosis Idioma: En Ano de publicação: 2024 Tipo de documento: Article