Your browser doesn't support javascript.
loading
A potential early-atheroprotective target: Irgm1 mediates lymphangiogenesis through LEC autophagy by Tfeb translocation.
Cai, Hengxuan; Ma, Guanpeng; Zhang, Zhenming; Liu, Guojie; Lu, Rongzhe; Liu, Yige; Wang, Jiaxin; Wang, Shanjie; Sun, Song; E, Mingyan; Li, Zhaoying; Fang, Shaohong; Yu, Bo.
Afiliação
  • Cai H; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, China
  • Ma G; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, China
  • Zhang Z; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, China
  • Liu G; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, China
  • Lu R; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, China
  • Liu Y; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, China
  • Wang J; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, China
  • Wang S; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, China
  • Sun S; Department of Clinical Laboratory, Qilu Hospital of Shandong University, Jinan 250012, China.
  • E M; Department of Thoracic Radiotherapy, Harbin Medical University Cancer Hospital, Nangang District, Harbin, China.
  • Li Z; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, China
  • Fang S; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, China
  • Yu B; Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, 150086, China; National Key Laboratory of Frigid Zone Cardiovascular Diseases (NKLFZCD), Harbin 150086, China; The Key Laboratory of Myocardial Ischemia, Chinese Ministry of Education, Harbin 150086, China
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167238, 2024 08.
Article em En | MEDLINE | ID: mdl-38759815
ABSTRACT
Lymphatic dysfunction is a pivotal pathological mechanism underlying the development of early atherosclerotic plaques. Potential targets of lymphatic function must be identified to realize the early prevention and treatment of atherosclerosis (AS). The immunity-related GTPase Irgm1 is involved in orchestrating cellular autophagy and apoptosis. However, the effect of Irgm1 on early AS progression, particularly through alterations in lymphatic function, remains unclear. In this study, we confirmed the protective effect of lymphangiogenesis on early-AS in vivo. Subsequently, an in vivo model of early AS mice with Irgm1 knockdown shows that Irgm1 reduces early atherosclerotic plaque burden by promoting lymphangiogenesis. Given that lymphatic endothelial cell (LEC) autophagy significantly contributes to lymphangiogenesis, Irgm1 may enhance lymphatic circulation by promoting LEC autophagy. Moreover, Irgm1 orchestrates autophagy in LECs by inhibiting mTOR and facilitating nuclear translocation of Tfeb. Collectively, these processes lead to lymphangiogenesis. Thus, this study establishes a link between Irgm1 and early AS, thus revealing a novel mechanism by which Irgm1 exerts an early protective influence on AS within the context of lymphatic circulation. The insights gained from this study have the potential to revolutionize the approach and management of AS onset.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Autofagia / Células Endoteliais / Linfangiogênese / Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Autofagia / Células Endoteliais / Linfangiogênese / Fatores de Transcrição de Zíper de Leucina e Hélice-Alça-Hélix Básicos Limite: Animals / Humans / Male Idioma: En Ano de publicação: 2024 Tipo de documento: Article