Your browser doesn't support javascript.
loading
Person-specific and pooled prediction models for binge eating, alcohol use and binge drinking in bulimia nervosa and alcohol use disorder.
Leenaerts, N; Soyster, P; Ceccarini, J; Sunaert, S; Fisher, A; Vrieze, E.
Afiliação
  • Leenaerts N; Department of Neurosciences, KU Leuven, Leuven Brain Institute, Research Group Psychiatry, Leuven, Belgium.
  • Soyster P; Department of Neurosciences, Mind-Body Research, Research Group Psychiatry, KU Leuven, Belgium.
  • Ceccarini J; Department of Psychology, Idiographic Dynamics Lab, University of California, Berkeley, USA.
  • Sunaert S; Department of Nuclear Medicine and Molecular Imaging, KU Leuven, Leuven Brain Institute, Research Nuclear Medicine & Molecular Imaging, Leuven, Belgium.
  • Fisher A; Department of Imaging and Pathology, Translational MRI, Biomedical Sciences Group, KU Leuven, Belgium.
  • Vrieze E; Department of Psychology, Idiographic Dynamics Lab, University of California, Berkeley, USA.
Psychol Med ; 54(10): 2758-2773, 2024 Jul.
Article em En | MEDLINE | ID: mdl-38775092
ABSTRACT

BACKGROUND:

Machine learning could predict binge behavior and help develop treatments for bulimia nervosa (BN) and alcohol use disorder (AUD). Therefore, this study evaluates person-specific and pooled prediction models for binge eating (BE), alcohol use, and binge drinking (BD) in daily life, and identifies the most important predictors.

METHODS:

A total of 120 patients (BN 50; AUD 51; BN/AUD 19) participated in an experience sampling study, where over a period of 12 months they reported on their eating and drinking behaviors as well as on several other emotional, behavioral, and contextual factors in daily life. The study had a burst-measurement design, where assessments occurred eight times a day on Thursdays, Fridays, and Saturdays in seven bursts of three weeks. Afterwards, person-specific and pooled models were fit with elastic net regularized regression and evaluated with cross-validation. From these models, the variables with the 10% highest estimates were identified.

RESULTS:

The person-specific models had a median AUC of 0.61, 0.80, and 0.85 for BE, alcohol use, and BD respectively, while the pooled models had a median AUC of 0.70, 0.90, and 0.93. The most important predictors across the behaviors were craving and time of day. However, predictors concerning social context and affect differed among BE, alcohol use, and BD.

CONCLUSIONS:

Pooled models outperformed person-specific models and the models for alcohol use and BD outperformed those for BE. Future studies should explore how the performance of these models can be improved and how they can be used to deliver interventions in daily life.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Alcoolismo / Bulimia Nervosa / Consumo Excessivo de Bebidas Alcoólicas / Aprendizado de Máquina Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Alcoolismo / Bulimia Nervosa / Consumo Excessivo de Bebidas Alcoólicas / Aprendizado de Máquina Limite: Adult / Female / Humans / Male / Middle aged Idioma: En Ano de publicação: 2024 Tipo de documento: Article