Your browser doesn't support javascript.
loading
Concurrent validity and test-retest reliability of VALD ForceDecks' strength, balance, and movement assessment tests.
Collings, Tyler J; Lima, Yuri Lopes; Dutaillis, Benjamin; Bourne, Matthew N.
Afiliação
  • Collings TJ; School of Health Sciences and Social Work, Griffith University, Gold Coast Campus, Australia; Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia. Electronic address: t.collings@griffith.edu.au.
  • Lima YL; School of Health Sciences and Social Work, Griffith University, Gold Coast Campus, Australia; Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia. Electronic address: https://twitter.com/YuriLima
  • Dutaillis B; School of Health Sciences and Social Work, Griffith University, Gold Coast Campus, Australia; Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia. Electronic address: https://twitter.com/benji_du
  • Bourne MN; School of Health Sciences and Social Work, Griffith University, Gold Coast Campus, Australia; Griffith Centre of Biomedical and Rehabilitation Engineering (GCORE), Menzies Health Institute Queensland, Griffith University, Gold Coast Campus, Australia. Electronic address: https://twitter.com/MBourne5
J Sci Med Sport ; 2024 May 03.
Article em En | MEDLINE | ID: mdl-38777737
ABSTRACT

OBJECTIVES:

To evaluate the concurrent validity and test-retest reliability of common movement, strength, and balance tests using portable uniaxial dual force plates.

DESIGN:

Repeated measures cross-sectional study.

METHODS:

Sixteen healthy individuals participated in two testing sessions, where they performed 12 different movement, strength, and balance tests. Vertical ground reaction force and centre of pressure data were collected using the VALD ForceDecks simultaneously with ground-embedded laboratory force plates. Concurrent validity was assessed using root mean square error for raw time-series data and Bland-Altman plots for discrete metrics. Test-retest reliability was assessed using intraclass correlation coefficients and minimal detectable changes.

RESULTS:

ForceDecks recorded vertical ground reaction forces and center of pressure with high accuracy compared to laboratory force plates. The mean bias between systems was negligible (<2 N or 0.1 mm), with small limits of agreement (<5 N or 1 mm). Overall, 530/674 (79%) showed good or excellent validity (<10% difference) and 611/773 (79%) had good or excellent reliability (intraclass correlation coefficient >0.75). ForceDecks reliability was similar to laboratory force plates (<0.07 intraclass correlation coefficient median difference for all metrics).

CONCLUSIONS:

Portable uniaxial force plates record highly accurate vertical ground reaction forces and center of pressure during a range of movement, strength, and balance tests. The VALD ForcDecks are a valid and reliable alternative to laboratory force plates when strict standardized testing and data analysis procedures are followed. Users should be aware of the validity and reliability characteristics of the tests and metrics they choose.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article