Your browser doesn't support javascript.
loading
A Naturally Inspired Extrusion-Based Microfluidic Approach for Manufacturing Tailorable Magnetic Soft Continuum Microrobotic Devices.
Hertle, Lukas; Sevim, Semih; Zhu, Jiawei; Pustovalov, Vitaly; Veciana, Andrea; Llacer-Wintle, Joaquin; Landers, Fabian C; Ye, Hao; Chen, Xiang-Zhong; Vogler, Hannes; Grossniklaus, Ueli; Puigmartí-Luis, Josep; Nelson, Bradley J; Pané, Salvador.
Afiliação
  • Hertle L; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland.
  • Sevim S; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland.
  • Zhu J; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland.
  • Pustovalov V; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland.
  • Veciana A; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland.
  • Llacer-Wintle J; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland.
  • Landers FC; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland.
  • Ye H; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland.
  • Chen XZ; Multi-Scale Robotics Lab, Institute of Robotics and Intelligent Systems, ETH Zurich, Tannenstrasse 3, Zurich, 8092, Switzerland.
  • Vogler H; Institute of Optoelectronics State Key Laboratory of Photovoltaic Science and Technology Shanghai Frontiers Science Research Base of Intelligent Optoelectronics and Perception, Fudan University, Shanghai, 200433, P. R. China.
  • Grossniklaus U; Yiwu Research Institute of Fudan University, Yiwu, Zhejiang, 322000, China.
  • Puigmartí-Luis J; Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.
  • Nelson BJ; Department of Plant and Microbial Biology & Zurich-Basel Plant Science Center, University of Zurich, Zollikerstrasse 107, Zurich, 8008, Switzerland.
  • Pané S; Departament de Ciència dels Materials i Química Física Institut de Química Teòrica i Computacional, University of Barcelona, Martí i Franquès, 1, Barcelona, 08028, Spain.
Adv Mater ; 36(31): e2402309, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38780003
ABSTRACT
Soft materials play a crucial role in small-scale robotic applications by closely mimicking the complex motion and morphing behavior of organisms. However, conventional fabrication methods face challenges in creating highly integrated small-scale soft devices. In this study, microfluidics is leveraged to precisely control reaction-diffusion (RD) processes to generate multifunctional and compartmentalized calcium-cross-linkable alginate-based microfibers. Under RD conditions, sophisticated alginate-based fibers are produced for magnetic soft continuum robotics applications with customizable features, such as geometry (compact or hollow), degree of cross-linking, and the precise localization of magnetic nanoparticles (inside the core, surrounding the fiber, or on one side). This fine control allows for tuning the stiffness and magnetic responsiveness of the microfibers. Additionally, chemically cleavable regions within the fibers enable disassembly into smaller robotic units or roll-up structures under a rotating magnetic field. These findings demonstrate the versatility of microfluidics in processing highly integrated small-scale devices.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article