Your browser doesn't support javascript.
loading
Janus Cr2BN Monolayer with Ferroelectricity and Room-Temperature Ferromagnetism.
Yan, Xu; Wang, Junyuan; Liu, Yong; Yang, Guochun.
Afiliação
  • Yan X; State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, China.
  • Wang J; State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, China.
  • Liu Y; State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, China.
  • Yang G; State Key Laboratory of Metastable Materials Science & Technology and Key Laboratory for Microstructural Material Physics of Hebei Province, School of Science, Yanshan University, Qinhuangdao, 066004, China.
Chemphyschem ; : e202400538, 2024 May 28.
Article em En | MEDLINE | ID: mdl-38805005
ABSTRACT
Janus monolayers, a special kind of two-dimensional materials, offer an exciting platform for the development of novel electronic/spintronic devices because of their out-of-plane asymmetry. Herein, we propose a sandwich liked Janus tetragonal Cr2BN monolayer with ferroelectricity and ferromagnetism through first-principles calculations. The predicted magnetic moment is up to ~3.0 µB/Cr originating from the distorted square crystal field induced by out-of-plane asymmetry. The Cr2BN monolayer possesses an intrinsic ferromagnetism with a high Curie temperature of 383 K and a sizeable magnetic anisotropy energy of 171 µeV/Cr. Its robust ferromagnetism, dominating by the multi-anion mediated super-exchange interactions, can even resist -5 % ~5 % biaxial strain. Its large cohesive energy and high dynamical/thermal stability provide a strong feasibility for experimental synthesis. These intriguing properties render the Cr2BN monolayer a promising material for nanoscale spintronic devices.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article