Your browser doesn't support javascript.
loading
Experimental congenital diaphragmatic hernia features an alteration of DNA sensing targets cGAS and STING.
Markel, Moritz; Tse, Wai Hei; De Leon, Nolan; Jank, Marietta; Albrechtsen, Jaida; Kahnamoui Zadeh, Shana; Patel, Daywin; Ozturk, Arzu; Lacher, Martin; Wagner, Richard; Keijzer, Richard.
Afiliação
  • Markel M; Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany.
  • Tse WH; Division of Pediatric Surgery, Departments of Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
  • De Leon N; Division of Pediatric Surgery, Departments of Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
  • Jank M; Division of Pediatric Surgery, Departments of Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
  • Albrechtsen J; Division of Pediatric Surgery, Departments of Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
  • Kahnamoui Zadeh S; Department of Pediatric Surgery, Medical Faculty Mannheim, University of Medical Center Mannheim, Heidelberg University, Heidelberg, Germany.
  • Patel D; Division of Pediatric Surgery, Departments of Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
  • Ozturk A; Division of Pediatric Surgery, Departments of Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
  • Lacher M; Division of Pediatric Surgery, Departments of Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
  • Wagner R; Division of Pediatric Surgery, Departments of Surgery, Pediatrics & Child Health and Physiology & Pathophysiology, Rady Faculty of Health Sciences, Max Rady College of Medicine, University of Manitoba, and Children's Hospital Research Institute of Manitoba, Winnipeg, MB, Canada.
  • Keijzer R; Department of Pediatric Surgery, University of Leipzig, Leipzig, Germany.
Pediatr Res ; 2024 May 30.
Article em En | MEDLINE | ID: mdl-38816442
ABSTRACT

BACKGROUND:

The pathogenesis of congenital diaphragmatic hernia (CDH) depends on multiple factors. Activation of the DNA-sensing cyclic-GMP-AMP-synthase (cGAS) and Stimulator-of-Interferon-Genes (STING) pathway by double-stranded DNA (dsDNA) links environmental stimuli and inflammation. We hypothesized that nitrofen exposure alters cGAS and STING in human bronchial epithelial cells and fetal rat lungs.

METHODS:

We used the Quant-IT™-PicoGreen™ assay to assess dsDNA concentration in BEAS-2B cells after 24 h of nitrofen-exposure and performed immunofluorescence of cGAS/STING. We used nitrofen to induce CDH and harvested control and CDH lungs at embryonic day E15, E18 and E21 for cGAS/STING immunofluorescence, RT-qPCR and RNA-Scope™ in-situ-hybridization (E18, E21).

RESULTS:

We found a higher concentration of dsDNA following nitrofen treatment. Nitrofen-exposure to BEAS-2B cells increased cGAS and STING protein abundance. cGAS abundance was higher in nitrofen lungs at E15, E18 and E21. RNA-Scope in-situ-hybridization showed higher cGAS and STING expression in E18 and E21 lungs. RT-qPCR revealed higher mRNA expression levels of STING in E21 nitrofen-induced lungs.

CONCLUSION:

Our data suggest that nitrofen-exposure increases dsDNA content which leads to stimulation of the cGAS/STING pathway in human BEAS-2B cells and the nitrofen rat model of CDH. Consequently, DNA sensing and the cGAS-STING-pathway potentially contribute to abnormal lung development in CDH. IMPACT STATEMENT We found an alteration of DNA sensing targets cGAS and STING in human BEAS-2B cells and experimental congenital diaphragmatic hernia with higher protein abundance and mRNA expression in cells and lung sections of nitrofen-treated rat pups. This is the first study to investigate DNA sensing, a potential link between environmental stimuli and inflammation, in experimental CDH. Our study extends the knowledge on the pathogenesis of experimental CDH.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article