Your browser doesn't support javascript.
loading
Tissue module discovery in single-cell-resolution spatial transcriptomics data via cell-cell interaction-aware cell embedding.
Li, Yuzhe; Zhang, Jinsong; Gao, Xin; Zhang, Qiangfeng Cliff.
Afiliação
  • Li Y; MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Academy for Advanced Interdisciplina
  • Zhang J; MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Scie
  • Gao X; Computer Science Program, Computer, Electrical and Mathematical Sciences and Engineering (CEMSE) Division, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia; KAUST Computational Bioscience Research Center (CBRC), King Abdullah University of Scienc
  • Zhang QC; MOE Key Laboratory of Bioinformatics, Beijing Advanced Innovation Center for Structural Biology & Frontier Research Center for Biological Structure, Center for Synthetic and Systems Biology, School of Life Sciences, Tsinghua University, Beijing 100084, China; Tsinghua-Peking Center for Life Scie
Cell Syst ; 15(6): 578-592.e7, 2024 Jun 19.
Article em En | MEDLINE | ID: mdl-38823396
ABSTRACT
Computational methods are desired for single-cell-resolution spatial transcriptomics (ST) data analysis to uncover spatial organization principles for how individual cells exert tissue-specific functions. Here, we present ST data analysis via interaction-aware cell embedding (SPACE), a deep-learning method for cell-type identification and tissue module discovery from single-cell-resolution ST data by learning a cell representation that captures its gene expression profile and interactions with its spatial neighbors. SPACE identified spatially informed cell subtypes defined by their special spatial distribution patterns and distinct proximal-interacting cell types. SPACE also automatically discovered "cell communities"-tissue modules with discernible boundaries and a uniform spatial distribution of constituent cell types. For each cell community, SPACE outputs a characteristic proximal cell-cell interaction network associated with physiological processes, which can be used to refine ligand-receptor-based intercellular signaling analyses. We envision that SPACE can be used in large-scale ST projects to understand how proximal cell-cell interactions contribute to emergent biological functions within cell communities. A record of this paper's transparent peer review process is included in the supplemental information.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Comunicação Celular / Análise de Célula Única / Transcriptoma Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Comunicação Celular / Análise de Célula Única / Transcriptoma Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article