Your browser doesn't support javascript.
loading
Tuning interfacial fluidity and colloidal stability of membranized coacervate protocells.
Ji, Yanglimin; Qiao, Yan.
Afiliação
  • Ji Y; Beijing National Laboratory for Molecular Sciences (BNLMS), Laboratory of Polymer Physics and Chemistry, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 100190, Beijing, China.
  • Qiao Y; University of Chinese Academy of Sciences, 100049, Beijing, China.
Commun Chem ; 7(1): 122, 2024 Jun 03.
Article em En | MEDLINE | ID: mdl-38831043
ABSTRACT
The cell membrane not only serves as the boundary between the cell's interior and the external environment but also plays a crucial role in regulating fundamental cellular behaviours. Interfacial membranization of membraneless coacervates, formed through liquid-liquid phase separation (LLPS), represents a reliable approach to constructing hierarchical cell-like entities known as protocells. In this study, we demonstrate the capability to modulate the interfacial membrane fluidity and thickness of dextran-bound coacervate protocells by adjusting the molecular weight of dextran or utilizing dextranase-catalyzed hydrolysis. This modulation allows for rational control over colloidal stability, interfacial molecular transport and cell-protocell interactions. Our work opens a new avenue for surface engineering of coacervate protocells, enabling the establishment of cell-mimicking structures and behaviours.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article