Your browser doesn't support javascript.
loading
Primary processes of the archetypal model complex azido(porphinato)iron(III) from ultrafast vibrational-electronic spectroscopy.
Flesch, Stefan; Domenianni, Luis I; Vöhringer, Peter.
Afiliação
  • Flesch S; Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, Wegelerstraße 12, 53115 Bonn, Germany.
  • Domenianni LI; Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, Wegelerstraße 12, 53115 Bonn, Germany.
  • Vöhringer P; Clausius-Institut für Physikalische und Theoretische Chemie, Rheinische Friedrich-Wilhelms-Universität, Wegelerstraße 12, 53115 Bonn, Germany.
J Chem Phys ; 160(21)2024 Jun 07.
Article em En | MEDLINE | ID: mdl-38836452
ABSTRACT
Azidoiron complexes serve as valuable photochemical precursors for catalytically active species containing high-valent iron. In bioinorganic chemistry, azido(tetraphenylporphinato)iron(III), i.e., [FeIII(tpp)(N3)] with tpp = 5, 10, 15, 20-tetraphenylporphyrin-21, 23-diido, constitutes the archetypal model system that was used to access for the first time the terminal nitridoiron core, FeV ≡ N, in the biomimetic redox-non-innocent ligand environment. So far, the light-induced dynamics leading to the oxidation of the metal and the release of dinitrogen from the N3-ligand have only been studied for precursors featuring redox-innocent auxiliary ligands that simplify the electronic structure change accompanying the photo-transformation. Here, we monitored the primary events of the above paradigmatic complex, following its optical excitation in the ultraviolet-to-visible spectral range using femtosecond spectroscopy with probing in both the UV-vis and mid-infrared regions. Following ultrafast Soret-excitation at 400 nm, the complex relaxes to the lowest excited sextet state by a first internal conversion in less than 200 fs. The excited state then undergoes vibrational relaxation on a time scale of roughly 2 ps before internally converting yet again to recover the sextet electronic ground state within 19.5 ps. Spectroscopic evidence is obtained neither for a transient occupation of the energetically lowest metal-centered state, 41A1, nor for vibrational relaxation in the ground-state. The primary processes seen here are thus in contrast to those previously derived from ultrafast UV-pump/vis-probe and UV-pump/XANES-probe spectroscopies for the halide congener [FeIII(tpp)(Cl)]. Any photochemical transformation of the complex arises from two-photon-induced dynamics.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article