Your browser doesn't support javascript.
loading
Deep random forest with ferroelectric analog content addressable memory.
Yin, Xunzhao; Müller, Franz; Laguna, Ann Franchesca; Li, Chao; Huang, Qingrong; Shi, Zhiguo; Lederer, Maximilian; Laleni, Nellie; Deng, Shan; Zhao, Zijian; Imani, Mohsen; Shi, Yiyu; Niemier, Michael; Hu, Xiaobo Sharon; Zhuo, Cheng; Kämpfe, Thomas; Ni, Kai.
Afiliação
  • Yin X; Zhejiang University, Hangzhou, Zhejiang, China.
  • Müller F; Key Laboratory of CS&AUS of Zhejiang Province, Hangzhou, China.
  • Laguna AF; Fraunhofer IPMS, Dresden, Germany.
  • Li C; De La Salle University, Manila, Philippines.
  • Huang Q; Zhejiang University, Hangzhou, Zhejiang, China.
  • Shi Z; Zhejiang University, Hangzhou, Zhejiang, China.
  • Lederer M; Zhejiang University, Hangzhou, Zhejiang, China.
  • Laleni N; Key Laboratory of CS&AUS of Zhejiang Province, Hangzhou, China.
  • Deng S; Fraunhofer IPMS, Dresden, Germany.
  • Zhao Z; Fraunhofer IPMS, Dresden, Germany.
  • Imani M; University of Notre Dame, Notre Dame, IN 46614, USA.
  • Shi Y; University of Notre Dame, Notre Dame, IN 46614, USA.
  • Niemier M; University of California, Irvine, CA 92697, USA.
  • Hu XS; University of Notre Dame, Notre Dame, IN 46614, USA.
  • Zhuo C; University of Notre Dame, Notre Dame, IN 46614, USA.
  • Kämpfe T; University of Notre Dame, Notre Dame, IN 46614, USA.
  • Ni K; Zhejiang University, Hangzhou, Zhejiang, China.
Sci Adv ; 10(23): eadk8471, 2024 Jun 07.
Article em En | MEDLINE | ID: mdl-38838137
ABSTRACT
Deep random forest (DRF), which combines deep learning and random forest, exhibits comparable accuracy, interpretability, low memory and computational overhead to deep neural networks (DNNs) in edge intelligence tasks. However, efficient DRF accelerator is lagging behind its DNN counterparts. The key to DRF acceleration lies in realizing the branch-split operation at decision nodes. In this work, we propose implementing DRF through associative searches realized with ferroelectric analog content addressable memory (ACAM). Utilizing only two ferroelectric field effect transistors (FeFETs), the ultra-compact ACAM cell performs energy-efficient branch-split operations by storing decision boundaries as analog polarization states in FeFETs. The DRF accelerator architecture and its model mapping to ACAM arrays are presented. The functionality, characteristics, and scalability of the FeFET ACAM DRF and its robustness against FeFET device non-idealities are validated in experiments and simulations. Evaluations show that the FeFET ACAM DRF accelerator achieves ∼106×/10× and ∼106×/2.5× improvements in energy and latency, respectively, compared to other DRF hardware implementations on state-of-the-art CPU/ReRAM.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article