Your browser doesn't support javascript.
loading
Identification and analysis of short-term and long-term salt-associated lncRNAs in the leaf of Avicennia marina.
Wang, Lingling; Fu, Yixuan; Yuan, Zixin; Wang, Jingyi; Guan, Yali.
Afiliação
  • Wang L; Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China. wll_198927@126.com.
  • Fu Y; Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
  • Yuan Z; Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
  • Wang J; Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China.
  • Guan Y; Ministry of Education Key Laboratory for Ecology of Tropical Islands, Key Laboratory of Tropical Animal and Plant Ecology of Hainan Province, College of Life Sciences, Hainan Normal University, Haikou, 571158, China. ylguan76@sina.com.
BMC Plant Biol ; 24(1): 500, 2024 Jun 05.
Article em En | MEDLINE | ID: mdl-38840244
ABSTRACT
As a highly salt-resistant mangrove, Avicennia marina can thrive in the hypersaline water. The leaves of Avicennia marina play a crucial role in salinity stress adaptability by secreting salt. Although the functions of long non-coding RNAs (lncRNAs) in leaves remain unknown, they have emerged as regulators in leaf development, aging and salt response. In this study, we employed transcriptomic data of both short-term and long-term salt treated leaves to identify salt-associated lncRNAs of leaf tissue. As a result, 687 short-term and 797 long-term salt-associated lncRNAs were identified. Notably, both short-term and long-term salt-associated lncRNAs exhibited slightly longer lengths and larger exons, but smaller introns compared with salt-non-associated lncRNAs. Furthermore, salt-associated lncRNAs also displayed higher tissue-specificity than salt-non-associated lncRNAs. Most of the salt-associated lncRNAs were common to short- and long-term salt treatments. And about one fifth of the downregulated salt-associated lncRNAs identified both in two terms were leaf tissue-specific lncRNAs. Besides, these leaf-specific lncRNAs were found to be involved in the oxidation-reduction and photosynthesis processes, as well as several metabolic processes, suggesting the noticeable functions of salt-associated lncRNAs in regulating salt responses of Avicennia marina leaves.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: RNA de Plantas / Folhas de Planta / Avicennia / RNA Longo não Codificante Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: RNA de Plantas / Folhas de Planta / Avicennia / RNA Longo não Codificante Idioma: En Ano de publicação: 2024 Tipo de documento: Article