Your browser doesn't support javascript.
loading
Extralong hot-spots sensor for SERS sensitive detection of phthalate plasticizers in biological tear and serum fluids.
Xu, Ziming; Luan, Longlong; Li, Pan; Dong, Kai.
Afiliação
  • Xu Z; Department of Ophthalmology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China.
  • Luan L; School of Chemistry and Chemical Engineering, Hefei University of Technology, HefeiAnhui, 230009, China.
  • Li P; Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, 230031, Anhui, China. lipan2011@iim.ac.cn.
  • Dong K; Department of Ophthalmology, the First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, 230001, P.R. China. dongkai777@ustc.edu.cn.
Anal Bioanal Chem ; 2024 Jun 09.
Article em En | MEDLINE | ID: mdl-38852120
ABSTRACT
Phthalate plasticizers (PAEs) illegally used in food pose a great threat to human health. A new and efficient sensing platform for the sensitive detection of the PAE residues in biological fluids needs to be designed and developed. Here, we report a simple and reliable surface-enhanced Raman spectroscopy (SERS) active platform with extralong hot spots of Au nanobipyramids@Ag nanorods (Au NBPs@Ag NRs) for the rapid and sensitive detection of PAEs in biological fluids. To achieve high activity, Au NBPs@Ag NRs with different shell lengths were fabricated by controlling the synthesis conditions, and the corresponding SERS properties were investigated by using crystal violet (CryV) and butyl benzyl phthalate (BBP). The experimental results showed that a longer shell length correlated to greater Raman activity, which was confirmed by finite-difference time-domain (FDTD) electromagnetic simulation. More importantly, the extralong hot spots of the Au NBPs@Ag NR SERS-active substrate showed excellent homogeneity and reproducibility for the CryV probe molecules (6.21%), and the detection limit was 10-9 M for both BBP and diethylhexyl phthalate (DEHP). Furthermore, through the standard addition method, an extralong hot spots SERS substrate could achieve highly sensitive detection of BBP and DEHP in serum and tears fluids, and the detection limit was as low as 3.52 × 10-8 M and 2.82 × 10-8 M. Therefore, the Au NBPs@Ag NR substrate with an extraordinarily long surface is efficient and versatile, and can potentially be used for high-efficiency sensing analysis in complex biological fluids.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article