Your browser doesn't support javascript.
loading
Oxidation of Flavin by Molecular Oxygen: Computational Insights into a Possible Radical Mechanism.
Stare, Jernej.
Afiliação
  • Stare J; National Institute of Chemistry,Hajdrihova 19, SI-1000 Ljubljana, Slovenia.
ACS Omega ; 9(22): 23431-23441, 2024 Jun 04.
Article em En | MEDLINE | ID: mdl-38854520
ABSTRACT
As a highly electrophilic moiety capable of oxidizing a variety of small organic molecules and biomolecules, flavin is an important prosthetic group in many enzymes. Upon oxidation of the substrate, flavin is converted into its reduced (dihydrogenated) form. The catalytic cycle is completed through oxidation back to the oxidized form, thus restoring the enzyme's oxidizing capability. While it has been firmly established that oxidation of the reduced form of flavin is cast by molecular oxygen, yielding oxidized flavin and hydrogen peroxide, the mechanism of this process is still poorly understood. Herein, we investigate the radical mechanism, which is one of the possible reaction mechanisms, by quantum chemical calculations. Because molecular oxygen exists as a triplet in its electronic ground state, whereas the products are singlets, the reaction is accompanied by hopping between electronic surfaces. We find that the rate-limiting factor of flavin oxidation is likely associated with the change in the spin state of the system. By considering several possible reactions involving flavin and its derivatives in the radical form and by examining the corresponding parts of the potential energy surface in various spin states, we estimate the effective barrier of the kinetically and thermodynamically preferred variant of flavin oxidation to be about 15 kcal/mol in the gas phase and about 7 kcal/mol in a polar (aqueous) environment. This is in agreement with kinetic studies of the corresponding monoamine oxidase enzymes, confirming the radical mechanism as a viable option for flavin regeneration in enzymes.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article