Your browser doesn't support javascript.
loading
Cytochrome P450 and UDP-glucuronosyltransferase expressions, activities, and induction abilities in 3D-cultured human renal proximal tubule epithelial cells.
Hashiba, Shiori; Nakano, Masataka; Yokoseki, Itsuki; Takahashi, Etsushi; Kondo, Masayuki; Jimbo, Yoichi; Ishiguro, Naoki; Arakawa, Hiroshi; Fukami, Tatsuki; Nakajima, Miki.
Afiliação
  • Hashiba S; Faculty of Pharmaceutical Sciences, Kanazawa University, Japan.
  • Nakano M; Faculty of Pharmaceutical Sciences, Kanazawa University, Japan nmiki@p.kanazawa-u.ac.jp.
  • Yokoseki I; Kanazawa University, Japan.
  • Takahashi E; R&D Department, Industrial Division, Nikkiso Co., Ltd., Japan.
  • Kondo M; R&D Department, Industrial Division, Nikkiso Co., Ltd., Japan.
  • Jimbo Y; R&D Department, Industrial Division, Nikkiso Co., Ltd., Japan.
  • Ishiguro N; Pharmacokinetic and non-clinical safety, Kobe Pharma Research Institute, Japan.
  • Arakawa H; Faculty of Pharmacy, Kanazawa University, Japan.
  • Fukami T; Kanazawa University, Japan.
  • Nakajima M; Faculty of Pharmaceutical Sciences, Kanazawa University, Japan nmiki@p.kanazawa-u.ac.jp.
Drug Metab Dispos ; 2024 Jun 12.
Article em En | MEDLINE | ID: mdl-38866474
ABSTRACT
The role of the kidney as an excretory organ for exogenous and endogenous compounds is well recognized, but there is a wealth of data demonstrating that the kidney has significant metabolizing capacity for a variety of exogenous and endogenous compounds that in some cases surpass the liver. The induction of drug-metabolizing enzymes by some chemicals can cause drug-drug interactions and intraindividual variability in drug clearance. In this study, we evaluated the expression and induction of cytochrome P450 (P450) and UDP-glucuronosyltransferase (UGT) isoforms in 3D-cultured primary human renal proximal tubule epithelial cells (RPTEC) to elucidate their utility as models of renal drug metabolism. CYP2B6, CYP2E1, CYP3A4, CYP3A5, and all detected UGTs (UGT1A1, UGT1A4, UGT1A6, UGT1A9, and UGT2B7) mRNA levels in 3D-RPTEC were significantly higher than those in 2D-RPTEC and HK-2 cells and were close to the levels in the human kidney cortex. CYP1B1 and CYP2J2 mRNA levels in 3D-RPTEC were comparable to those in 2D-RPTEC, HK-2 cells, and the human kidney cortex. Midazolam 1'-hydroxylation, trifluoperazine N-glucuronidation, serotonin O-glucuronidation, propofol O-glucuronidation, and morphine 3-glucuronidation in the 3D-RPTEC were significantly higher than the 2D-RPTEC and comparable to those in the HepaRG cells, although bupropion, ebastine, and calcitriol hydroxylations were not different between the 2D- and 3D-RPTEC. Treatment with ligands of the aryl hydrocarbon receptor and farnesoid X receptor induced CYP1A1 and UGT2B4 expression, respectively, in 3D-RPTEC compared to 2D-RPTEC. We provided information on the expression, activity, and induction abilities of P450s and UGTs in 3D-RPTEC as an in vitro human renal metabolism model. Significance Statement This study demonstrated that the expression of P450s and UGTs in 3D-RPTEC was higher than those in 2D-RPTEC and HK-2 cells. The results were comparable to that in the human kidney cortex. 3D-RPTEC are useful for evaluating the induction of kidney P450s, UGTs, and human renal drug metabolism in cellulo.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article