Your browser doesn't support javascript.
loading
Y4 RNA fragments from cardiosphere-derived cells ameliorate diabetic myocardial ischemia‒reperfusion injury by inhibiting protein kinase C ß-mediated macrophage polarization.
Liu, De-Zhao; Luo, Xiao-Zhi; Lu, Chuang-Hong; Feng, Yang-Yi; Chen, De-Xin; Zeng, Zhi-Yu; Huang, Feng.
Afiliação
  • Liu DZ; Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Na
  • Luo XZ; Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Na
  • Lu CH; Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Na
  • Feng YY; Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Na
  • Chen DX; Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Na
  • Zeng ZY; Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Na
  • Huang F; Department of Cardiology & Guangxi Key Laboratory Base of Precision Medicine in Cardio-Cerebrovascular Diseases Control and Prevention & Guangxi Clinical Research Center for Cardio-Cerebrovascular Diseases, The First Affiliated Hospital of Guangxi Medical University, No.6 Shuangyong Road, Na
Cardiovasc Diabetol ; 23(1): 202, 2024 Jun 12.
Article em En | MEDLINE | ID: mdl-38867293
ABSTRACT
The specific pathophysiological pathways through which diabetes exacerbates myocardial ischemia/reperfusion (I/R) injury remain unclear; however, dysregulation of immune and inflammatory cells, potentially driven by abnormalities in their number and function due to diabetes, may play a significant role. In the present investigation, we simulated myocardial I/R injury by inducing ischemia through ligation of the left anterior descending coronary artery in mice for 40 min, followed by reperfusion for 24 h. Previous studies have indicated that protein kinase Cß (PKCß) is upregulated under hyperglycemic conditions and is implicated in the development of various diabetic complications. The Y4 RNA fragment is identified as the predominant small RNA component present in the extracellular vesicles of cardio sphere-derived cells (CDCs), exhibiting notable anti-inflammatory properties in the contexts of myocardial infarction and cardiac hypertrophy. Our investigation revealed that the administration of Y4 RNA into the ventricular cavity of db/db mice following myocardial I/R injury markedly enhanced cardiac function. Furthermore, Y4 RNA was observed to facilitate M2 macrophage polarization and interleukin-10 secretion through the suppression of PKCß activation. The mechanism by which Y4 RNA affects PKCß by regulating macrophage activation within the inflammatory environment involves the inhibition of ERK1/2 phosphorylation In our study, the role of PKCß in regulating macrophage polarization during myocardial I/R injury was investigated through the use of PKCß knockout mice. Our findings indicate that PKCß plays a crucial role in modulating the inflammatory response associated with macrophage activation in db/db mice experiencing myocardial I/R, with a notable exacerbation of this response observed upon significant upregulation of PKCß expression. In vitro studies further elucidated the protective mechanism by which Y4 RNA modulates the PKCß/ERK1/2 signaling pathway to induce M2 macrophage activation. Overall, our findings suggest that Y4 RNA plays an anti-inflammatory role in diabetic I/R injury, suggesting a novel therapeutic approach for managing myocardial I/R injury in diabetic individuals.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão Miocárdica / Transdução de Sinais / Modelos Animais de Doenças / Proteína Quinase C beta / Macrófagos / Camundongos Endogâmicos C57BL Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Traumatismo por Reperfusão Miocárdica / Transdução de Sinais / Modelos Animais de Doenças / Proteína Quinase C beta / Macrófagos / Camundongos Endogâmicos C57BL Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article