Your browser doesn't support javascript.
loading
Shrinking sizes of trout and salamanders are unexplained by climate warming alone.
Arismendi, Ivan; Gregory, Stanley V; Bateman, Douglas S; Penaluna, Brooke E.
Afiliação
  • Arismendi I; Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Nash Hall 104, Corvallis, OR, 97331, USA. Ivan.Arismendi@oregonstate.edu.
  • Gregory SV; Department of Fisheries, Wildlife, and Conservation Sciences, Oregon State University, Nash Hall 104, Corvallis, OR, 97331, USA.
  • Bateman DS; Department of Forest Engineering, Resources and Management, College of Forestry, Oregon State University, 210A Snell Hall, Corvallis, OR, 97331, USA.
  • Penaluna BE; USDA Forest Service, Pacific Northwest Research Station, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA.
Sci Rep ; 14(1): 13614, 2024 06 13.
Article em En | MEDLINE | ID: mdl-38871823
ABSTRACT
Decreases in body sizes of animals related to recent climate warming can affect population persistence and stability. However, direct observations of average sizes over time and their interrelationships with underlying density-dependent and density-independent processes remain poorly understood owing to the lack of appropriate long-term datasets. We measured body size of two species common to headwater streams in coastal and Cascades ecoregions of the Pacific Northwest of North America over multiple decades, comparing old-growth and managed forests. We found consistent decreases in median length of Coastal Cutthroat Trout Oncorhynchus clarkii clarkii, but a coexisting species, the Coastal Giant Salamander Dicamptodon tenebrosus, appears to be more resilient to size changes over time. Based on observed trends, adult trout have decreased in length by 6-13% over the last 30 years. Length decreased more in larger compared to smaller animals, suggesting that these effects reflect changes in growth trajectories. Results from a model-selection approach that included hydroclimatic and biological information as covariates in one of our study ecoregions demonstrated that stream temperature alone did not explain observed length reductions. Rather, a combination of density-dependent (animal abundances) and local density-independent factors (temperature, habitat, and streamflow) explained observed patterns of size. Continued decreases in size could lead to trophic cascades, biodiversity loss, or in extreme cases, species extirpation. However, the intricate links between density-independent and density-dependent factors in controlling population-level processes in streams need further attention.
Assuntos

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Truta / Urodelos / Tamanho Corporal Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Truta / Urodelos / Tamanho Corporal Limite: Animals Idioma: En Ano de publicação: 2024 Tipo de documento: Article