Your browser doesn't support javascript.
loading
TSC2 loss in neural progenitor cells suppresses translation of ASD/NDD-associated transcripts in an mTORC1- and MNK1/2-reversible fashion.
bioRxiv ; 2024 Jul 02.
Article em En | MEDLINE | ID: mdl-38895292
ABSTRACT
Tuberous sclerosis complex (TSC) is an inherited neurodevelopmental disorder (NDD) with frequent manifestations of epilepsy and autism spectrum disorder (ASD). TSC is caused by inactivating mutations in TSC1 or TSC2 tumor suppressor genes, with encoded proteins hamartin (TSC1) and tuberin (TSC2) forming a functional complex inhibiting mechanistic target of rapamycin complex 1 (mTORC1) signaling. This has led to treatment with allosteric mTORC1 inhibitor rapamycin analogs ("rapalogs") for TSC tumors; however, rapalogs are ineffective for treating neurodevelopmental manifestations. mTORC1 signaling controls protein synthesis by regulating formation of the eIF4F complex, with further modulation by MNK1/2 kinases via phosphorylation of the eIF4F subunit eIF4E. While both these pathways modulate translation, comparing their impact on transcriptome-wide mRNA translation, as well as effects of inhibiting these pathways in TSC has not been explored. Here, employing CRISPR-modified, isogenic TSC2 patient-derived neural progenitor cells (NPCs), we have examined transcriptome-wide changes in mRNA translation upon TSC2 loss. Our results reveal dysregulated translation in TSC2 -Null NPCs, which significantly overlaps with the translatome from TSC1 -Null NPCs. Interestingly, numerous non-monogenic ASD-, NDD-and epilepsy-associated genes identified in patients harboring putative loss-of-function mutations, were translationally suppressed in TSC2 -Null NPCs. Importantly, translation of these ASD- and NDD-associated genes was reversed upon inhibition of either mTORC1 or MNK1/2 signaling using RMC-6272 or eFT-508, respectively. This study establishes the importance of mTORC1-eIF4F- and MNK-eIF4E-sensitive mRNA translation in TSC, ASD and other neurodevelopmental disorders laying the groundwork for evaluating drugs in clinical development that target these pathways as a treatment strategy for these disorders.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article