Your browser doesn't support javascript.
loading
OTUD7B knockdown inhibits proliferation and autophagy through AKT/mTOR signaling pathway in human prostate cancer cell.
Kim, Yae Ji; Lee, Hui Ju; Kim, Kyung Hyun; Cho, Sung Pil; Jung, Ju Young.
Afiliação
  • Kim YJ; Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea.
  • Lee HJ; Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea.
  • Kim KH; Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea.
  • Cho SP; Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea.
  • Jung JY; Department of Veterinary Medicine, Institute of Veterinary Science, College of Veterinary Medicine, Chungnam National University, 220 Gung-Dong, Yusung-Gu, Daejeon, 34134, Republic of Korea. jyjung@cnu.ac.kr.
Discov Oncol ; 15(1): 247, 2024 Jun 27.
Article em En | MEDLINE | ID: mdl-38935308
ABSTRACT
Prostate cancer (PCa) is the second leading disease of cancer-related death in men around the world, and it is almost impossible to treat advanced PCa. OTUD7B is a member of the deubiquitinase family that undergoes a post-translational transformation process, which is essential for cell stability and signaling and is known to play a critical role in cancer. However, its role in PCa has not been discovered. The aim of the study was to investigate the expression and mechanism of OTUD7B in PCa cells. According to the database, high OTUD7B expression showed a poor prognosis. Therefore, we downregulated OTUD7B using siRNA and confirmed the role of OTUD7B in PC3 prostate cancer cells. OTUD7B knockdown effectively induced apoptosis and inhibited the proliferation in PC3 cells. OTUD7B knockdown inhibited autophagy through AKT/mTOR signaling. We also confirmed the relationship between AKT/mTOR signaling and autophagy through rapamycin, an mTOR inhibitor. Taken together, OTUD7B promotes the proliferation, and autophagy, and inhibits apoptosis of prostate cancer cells via the AKT/mTOR signaling pathway.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article