Your browser doesn't support javascript.
loading
C-H-activated Csp2-Csp3 diastereoselective gridization enables ultraviolet-emitting stereo-molecular nanohydrocarbons with mulitple H···H interactions.
Wei, Ying; Zhong, Chunxiao; Sun, Yue; Ma, Shuwei; Ni, Mingjian; Wu, Xiangping; Yan, Yongxia; Yang, Lei; Khodov, Ilya A; Ge, Jiaoyang; Li, Yang; Lin, Dongqing; Wang, Yongxia; Bao, Qiujing; Zhang, He; Wang, Shasha; Song, Juan; Lin, Jinyi; Xie, Linghai; Huang, Wei.
Afiliação
  • Wei Y; Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
  • Zhong C; Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
  • Sun Y; Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
  • Ma S; Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
  • Ni M; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China.
  • Wu X; Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
  • Yan Y; Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
  • Yang L; Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
  • Khodov IA; G.A. Krestov Institute of Solution Chemistry, Russian Academy of Sciences, Akademicheskaya str. 1, Ivanovo, 153045, Russian Federation.
  • Ge J; Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
  • Li Y; Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
  • Lin D; Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
  • Wang Y; Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
  • Bao Q; Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
  • Zhang H; Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
  • Wang S; Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
  • Song J; Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China.
  • Lin J; Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), 30 South Puzhu Road, Nanjing, 211816, China. iamjylin@njtech.edu.cn.
  • Xie L; Centre for Molecular Systems and Organic Devices (CMSOD), State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts & Telecommunications, 9 Wenyuan Road, Nanjing, 210023, China. iamlhxie@njupt.edu.cn.
  • Huang W; Frontiers Science Center for Flexible Electronics (FSCFE), MIIT Key Laboratory of Flexible Electronics (KLoFE), Northwestern Polytechnical University, Xi'an, 710072, China. iamlhxie@njupt.edu.cn.
Nat Commun ; 15(1): 5438, 2024 Jun 27.
Article em En | MEDLINE | ID: mdl-38937440
ABSTRACT
Gridization is an emerging molecular integration technology that enables the creation of multifunctional organic semiconductors through precise linkages. While Friedel-Crafts gridization of fluorenols is potent, direct linkage among fluorene molecules poses a challenge. Herein, we report an achiral Pd-PPh3-cataylized diastereoselective (>991 d.r.) gridization based on the C-H-activation of fluorene to give dimeric and trimeric windmill-type nanogrids (DWGs and TWGs). These non-conjugated stereo-nanogrids showcase intramolecular multiple H…H interactions with a low field shift to 8.51 ppm and circularly polarized luminescence with high luminescent dissymmetry factors (|gPL | = 0.012). Significantly, the nondoped organic light-emitting diodes (OLEDs) utilizing cis-trans-TWG1 emitter present an ultraviolet electroluminescent peak at ~386 nm (CIE 0.17, 0.04) with a maximum external quantum efficiency of 4.17%, marking the highest record among nondoped ultraviolet OLEDs based on hydrocarbon compounds and the pioneering ultraviolet OLEDs based on macrocycles. These nanohydrocarbon offer potential nanoscafflolds for ultraviolet light-emitting optoelectronic applications.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article