Your browser doesn't support javascript.
loading
A Vibrio cholerae Anti-Phage System Depletes Nicotinamide Adenine Dinucleotide to Restrict Virulent Bacteriophages.
Woldetsadik, Yishak A; Lazinski, David W; Camilli, Andrew.
Afiliação
  • Woldetsadik YA; Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.
  • Lazinski DW; Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.
  • Camilli A; Department of Molecular Biology and Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, USA.
bioRxiv ; 2024 Jun 17.
Article em En | MEDLINE | ID: mdl-38948830
ABSTRACT
Bacteria and their predatory viruses (bacteriophages or phages) are in a perpetual molecular arms race. This has led to the evolution of numerous phage defensive systems in bacteria that are still being discovered, as well as numerous ways of interference or circumvention on the part of phages. Here, we identify a unique molecular battle between the classical biotype of Vibrio cholerae and virulent phages ICP1, ICP2, and ICP3. We show that classical biotype strains resist almost all isolates of these phages due to a 25-kb genomic island harboring several putative anti-phage systems. We observed that one of these systems, Nezha, encoding SIR2-like and helicase proteins, inhibited the replication of all three phages. Bacterial SIR2-like enzymes degrade the essential metabolic coenzyme nicotinamide adenine dinucleotide (NAD+), thereby preventing replication of the invading phage. In support of this mechanism, we identified one phage isolate, ICP1_2001, which circumvents Nezha by encoding two putative NAD+ regeneration enzymes. By restoring the NAD+ pool, we hypothesize that this system antagonizes Nezha without directly interacting with either protein and should be able to antagonize other anti-phage systems that deplete NAD+.

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article