Your browser doesn't support javascript.
loading
Narrowband Blue Circularly Polarized Luminescence Emitter Based on BN-Doped Benzo[6]helicene with Stimuli-Responsive Properties.
Liu, Meiyan; Li, Chenglong; Liao, Guanming; Zhao, Fenggui; Yao, Chunxia; Wang, Nan; Yin, Xiaodong.
Afiliação
  • Liu M; Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.
  • Li C; Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.
  • Liao G; Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.
  • Zhao F; Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.
  • Yao C; Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.
  • Wang N; Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.
  • Yin X; Key Laboratory of Cluster Science, Ministry of Education of China, Beijing Key Laboratory of Photoelectronic/Electrophotonic Conversion Materials, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, 102488, P. R. China.
Chemistry ; 30(52): e202402257, 2024 Sep 16.
Article em En | MEDLINE | ID: mdl-38955898
ABSTRACT
Boron-doped helicenes, known for their unique electronic and photophysical properties, are of great interest for numerous applications. This research introduces two new azabora[6]helicenes, H[6]BN1 and H[6]BN2, synthesized through an efficient method. These molecules have boron and nitrogen atoms in opposing positions, enhancing their distinctive attributes. Both helicenes show excellent emission properties, with H[6]BN1 and H[6]BN2 exhibiting narrowband blue fluorescence and circularly polarized luminescence (CPL), achieving glum values of 4~5×10-4 which is beneficial for chiroptical applications. The addition of a donor group, 3, 6-di-tert-butyl-9H-carbazole, in H[6]BN2 improves luminescence, likely due to enhanced molecular orbital overlap and electron delocalization. H[6]BN1's needle-like single crystals exhibit mechanochromism, changing luminescent color from yellow to green under mechanical stress, which is promising for stimulus-responsive materials. In conclusion, this study presents a novel class of BN[6]helicenes with superior chiroptical properties. Their combination of electronic features and mechanochromism makes them ideal for advanced chiroptical materials, expanding the potential of helicene-based compounds and offering new directions for the synthesis of molecules with specific chiroptical characteristics.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article