Your browser doesn't support javascript.
loading
Integrated metagenomic and metabolomic analysis reveals distinctive stage-specific gut-microbiome-derived metabolites in intracranial aneurysms.
Sun, Haitao; Sun, Kaijian; Tian, Hao; Chen, Xiheng; Su, Shixing; Tu, Yi; Chen, Shilan; Wang, Jiaxuan; Peng, Meichang; Zeng, Meiqin; Li, Xin; Luo, Yunhao; Xie, Yugu; Feng, Xin; Li, Zhuang; Zhang, Xin; Li, Xifeng; Liu, Yanchao; Ye, Wei; Chen, Zhengrui; Zhu, Zhaohua; Li, Youxiang; Xia, Fangbo; Zhou, Hongwei; Duan, Chuanzhi.
Afiliação
  • Sun H; Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration,
  • Sun K; Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
  • Tian H; Key Laboratory of Mental Health of the Ministry of Education, Guangdong-Hong Kong-Macao Greater Bay Area Centre for Brain Science and Brain-Inspired Intelligence, Southern Medical University, Guangzhou, Guangdong, China.
  • Chen X; Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration,
  • Su S; Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration,
  • Tu Y; Beijing Neurosurgical Institute, Beijing Engineering Research Center for Interventional Neuroradiology, Department of Neurosurgery, Beijing TianTan Hospital, Capital Medical University, Beijing, China.
  • Chen S; Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration,
  • Wang J; Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration,
  • Peng M; Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration,
  • Zeng M; Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
  • Li X; Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
  • Luo Y; Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration,
  • Xie Y; Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
  • Feng X; Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration,
  • Li Z; Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
  • Zhang X; Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
  • Li X; Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
  • Liu Y; Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
  • Ye W; Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration,
  • Chen Z; Microbiome Medicine Centre, Clinical Biobank Centre, Guangdong Provincial Clinical Research Centre for Laboratory Medicine, Department of Laboratory Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
  • Zhu Z; Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration,
  • Li Y; Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration,
  • Xia F; Neurosurgery Centre, Department of Cerebrovascular Surgery, Engineering Technology Research Centre of Education Ministry of China on Diagnosis and Treatment of Cerebrovascular Disease, The National Key Clinical Specialty, Guangdong Provincial Key Laboratory on Brain Function Repair and Regeneration,
  • Zhou H; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
  • Duan C; The Second School of Clinical Medicine, Southern Medical University, Guangzhou, Guangdong, China.
Gut ; 2024 Jul 13.
Article em En | MEDLINE | ID: mdl-38960582
ABSTRACT

OBJECTIVE:

Our study aimed to explore the influence of gut microbiota and their metabolites on intracranial aneurysms (IA) progression and pinpoint-related metabolic biomarkers derived from the gut microbiome.

DESIGN:

We recruited 358 patients with unruptured IA (UIA) and 161 with ruptured IA (RIA) from two distinct geographical regions for conducting an integrated analysis of plasma metabolomics and faecal metagenomics. Machine learning algorithms were employed to develop a classifier model, subsequently validated in an independent cohort. Mouse models of IA were established to verify the potential role of the specific metabolite identified.

RESULTS:

Distinct shifts in taxonomic and functional profiles of gut microbiota and their related metabolites were observed in different IA stages. Notably, tryptophan metabolites, particularly indoxyl sulfate (IS), were significantly higher in plasma of RIA. Meanwhile, upregulated tryptophanase expression and indole-producing microbiota were observed in gut microbiome of RIA. A model harnessing gut-microbiome-derived tryptophan metabolites demonstrated remarkable efficacy in distinguishing RIA from UIA patients in the validation cohort (AUC=0.97). Gut microbiota depletion by antibiotics decreased plasma IS concentration, reduced IA formation and rupture in mice, and downregulated matrix metalloproteinase-9 expression in aneurysmal walls with elastin degradation reduction. Supplement of IS reversed the effect of gut microbiota depletion.

CONCLUSION:

Our investigation highlights the potential of gut-microbiome-derived tryptophan metabolites as biomarkers for distinguishing RIA from UIA patients. The findings suggest a novel pathogenic role for gut-microbiome-derived IS in elastin degradation in the IA wall leading to the rupture of IA.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article