Your browser doesn't support javascript.
loading
Developing transcriptomic signatures as a biomarker of cellular senescence.
Mahmud, Shamsed; Pitcher, Louise E; Torbenson, Elijah; Robbins, Paul D; Zhang, Lei; Dong, Xiao.
Afiliação
  • Mahmud S; Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA.
  • Pitcher LE; Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA.
  • Torbenson E; Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA.
  • Robbins PD; Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA.
  • Zhang L; Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA.
  • Dong X; Institute on the Biology of Aging and Metabolism, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin Cities, 420 Washington Avenue SE, Minneapolis, MN 55455, USA. Electronic
Ageing Res Rev ; 99: 102403, 2024 Aug.
Article em En | MEDLINE | ID: mdl-38964507
ABSTRACT
Cellular senescence is a cell fate driven by different types of stress, where damaged cells exit from the cell cycle and, in many cases, develop an inflammatory senescence-associated secretory phenotype (SASP). Senescence has often been linked to driving aging and the onset of multiple diseases conferred by the harmful SASP, which disrupts tissue homeostasis and impairs the regular function of many tissues. This phenomenon was first observed in vitro when fibroblasts halted replication after approximately 50 population doublings. In addition to replication-induced senescence, factors such as DNA damage and oncogene activation can induce cellular senescence both in culture and in vivo. Despite their contribution to aging and disease, identifying senescent cells in vivo has been challenging due to their heterogeneity. Although senescent cells can express the cell cycle inhibitors p16Ink4a and/or p21Cip1 and exhibit SA-ß-gal activity and evidence of a DNA damage response, there is no universal biomarker for these cells, regardless of inducer or cell type. Recent studies have analyzed the transcriptomic characteristics of these cells, leading to the identification of signature gene sets like CellAge, SeneQuest, and SenMayo. Advancements in single-cell and spatial RNA sequencing now allow for analyzing senescent cell heterogeneity within the same tissue and the development of machine learning algorithms, e.g., SenPred, SenSig, and SenCID, to discover cellular senescence using RNA sequencing data. Such insights not only deepen our understanding of the genetic pathways driving cellular senescence, but also promote the development of its quantifiable biomarkers. This review summarizes the current knowledge of transcriptomic signatures of cellular senescence and their potential as in vivo biomarkers.
Assuntos
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biomarcadores / Senescência Celular / Transcriptoma Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Assunto principal: Biomarcadores / Senescência Celular / Transcriptoma Limite: Animals / Humans Idioma: En Ano de publicação: 2024 Tipo de documento: Article