Your browser doesn't support javascript.
loading
Coriandrum sativum L., essential oil as a promising source of bioactive compounds with GC/MS, antioxidant, antimicrobial activities: in vitro and in silico predictions.
Nouioura, Ghizlane; El Fadili, Mohamed; El Hachlafi, Naoufal; Maache, Souad; Mssillou, Ibrahim; A Abuelizz, Hatem; Lafdil, Fatima Zahra; Er-Rahmani, Sara; Lyoussi, Badiaa; Derwich, Elhoussine.
Afiliação
  • Nouioura G; Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
  • El Fadili M; LIMAS Laboratory, Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
  • El Hachlafi N; Laboratory of Microbial Biotechnology and Bioactive Molecules, Sciences and Technologies Faculty, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
  • Maache S; Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
  • Mssillou I; Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
  • A Abuelizz H; Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia.
  • Lafdil FZ; Laboratory of Bio-resources, Biotechnology, Faculty of Sciences, Ethnopharmacology and Health, Mohammed the First University, Oujda, Morocco.
  • Er-Rahmani S; Department of Chemistry, University of Torino, Torino, Italy.
  • Lyoussi B; Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
  • Derwich E; Laboratory of Natural Substances, Pharmacology, Environment, Modeling, Health and Quality of Life (SNAMOPEQ), Faculty of Sciences Dhar El Mehraz, Sidi Mohamed Ben Abdellah University, Fez, Morocco.
Front Chem ; 12: 1369745, 2024.
Article em En | MEDLINE | ID: mdl-38974992
ABSTRACT

Introduction:

Coriandrum sativum L. essential oil (CS-EO) is being evaluated in vitro for its antioxidant and antimicrobial properties, and its volatile compounds are to be identified as part of this exploratory study.

Methods:

The processes underlying the in vitro biological properties were explained using in silico simulations, including drug-likeness prediction, molecular docking, and pharmacokinetics (absorption, distribution, metabolism, excretion, and toxicity-ADMET). Chemical screening of CS-EO was conducted using gas chromatography-mass spectrometry (GC-MS). Five in vitro complementary techniques were used to assess the antioxidant activity of CS-EO reducing power (RP), 2,2-diphenyl-1-picrylhydrazyl (DPPH), 2,2'-azinobis (3-ethylbenzothiazoline-6-sulfonate) (ABTS) radical scavenging activity, ß-Carotene bleaching test (BCBT), and phosphomolybdenum assay (TAC).

Results:

According to GC-MS analysis, linalool (59.04%), γ-Terpinene (13.02%), and α-Pinene (6.83%) are the main constituents of CS-EO. Based on the in vitro antioxidant assay results, CS-EO has been found to have a superior antioxidant profile. Its estimated scavenging rates for ABTS+ are 0.51 ± 0.04 mg/mL, BCBT is 9.02 ± 0.01 mg/mL, and CS-EO is 1.52 ± 0.14 mg/mL. C. sativum demonstrated 6.13 ± 0.00 µg/mL for reducing power and 213.44 ± 0.45 mg AAE/mL for total antioxidant activity. The in vitro antimicrobial activity of CS-EO was assessed against five strains, including two gram-positive bacteria, two gram-negative bacteria, and one fungal strain (Candida albicans). Significant antibacterial and antifungal activities against all strains were found using the disc-diffusion assay, with zones of inhibition larger than 15 mm. The microdilution test highlighted the lowest MIC and MBC values with gram-positive bacteria, ranging from 0.0612 to 0.125% v/v for MIC and 0.125% v/v for MBC. The fungal strain's MFC was 1.0% v/v and its MIC was measured at 0.5%. Based on the MBC/MIC and MFC/MIC ratios, CS-EO exhibits bactericidal and fungicidal activity. The ADMET study indicates that the primary CS-EO compounds are good candidates for the development of pharmaceutical drugs due to their favorable pharmacokinetic properties.

Conclusion:

These results point to a potential application of this plant as a natural remedy and offer empirical backing for its traditional uses. It is a promising environmentally friendly preservative that can be used extensively in the food and agricultural industries to prevent aflatoxin contamination and fungal growth in stored goods.
Palavras-chave

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article

Texto completo: 1 Coleções: 01-internacional Base de dados: MEDLINE Idioma: En Ano de publicação: 2024 Tipo de documento: Article